971 resultados para Generalized extreme value distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme stock price movements are of great concern to both investors and the entire economy. For investors, a single negative return, or a combination of several smaller returns, can possible wipe out so much capital that the firm or portfolio becomes illiquid or insolvent. If enough investors experience this loss, it could shock the entire economy. An example of such a case is the stock market crash of 1987. Furthermore, there has been a lot of recent interest regarding the increasing volatility of stock prices. ^ This study presents an analysis of extreme stock price movements. The data utilized was the daily returns for the Standard and Poor's 500 index from January 3, 1978 to May 31, 2001. Research questions were analyzed using the statistical models provided by extreme value theory. One of the difficulties in examining stock price data is that there is no consensus regarding the correct shape of the distribution function generating the data. An advantage with extreme value theory is that no detailed knowledge of this distribution function is required to apply the asymptotic theory. We focus on the tail of the distribution. ^ Extreme value theory allows us to estimate a tail index, which we use to derive bounds on the returns for very low probabilities on an excess. Such information is useful in evaluating the volatility of stock prices. There are three possible limit laws for the maximum: Gumbel (thick-tailed), Fréchet (thin-tailed) or Weibull (no tail). Results indicated that extreme returns during the time period studied follow a Fréchet distribution. Thus, this study finds that extreme value analysis is a valuable tool for examining stock price movements and can be more efficient than the usual variance in measuring risk. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inverse Weibull distribution has the ability to model failure rates which are quite common in reliability and biological studies. A three-parameter generalized inverse Weibull distribution with decreasing and unimodal failure rate is introduced and studied. We provide a comprehensive treatment of the mathematical properties of the new distribution including expressions for the moment generating function and the rth generalized moment. The mixture model of two generalized inverse Weibull distributions is investigated. The identifiability property of the mixture model is demonstrated. For the first time, we propose a location-scale regression model based on the log-generalized inverse Weibull distribution for modeling lifetime data. In addition, we develop some diagnostic tools for sensitivity analysis. Two applications of real data are given to illustrate the potentiality of the proposed regression model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new lifetime distribution capable of modeling a bathtub-shaped hazard-rate function is proposed. The proposed model is derived as a limiting case of the Beta Integrated Model and has both the Weibull distribution and Type I extreme value distribution as special cases. The model can be considered as another useful 3-parameter generalization of the Weibull distribution. An advantage of the model is that the model parameters can be estimated easily based on a Weibull probability paper (WPP) plot that serves as a tool for model identification. Model characterization based on the WPP plot is studied. A numerical example is provided and comparison with another Weibull extension, the exponentiated Weibull, is also discussed. The proposed model compares well with other competing models to fit data that exhibits a bathtub-shaped hazard-rate function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Q tau estimator minimizes a tau scale of the differences between empirical and theoretical quantiles. It is n(1/2) consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present parallel characterizations of two different values in the framework of restricted cooperation games. The restrictions are introduced as a finite sequence of partitions defined on the player set, each of them being coarser than the previous one, hence forming a structure of different levels of a priori unions. On the one hand, we consider a value first introduced in Ref. [18], which extends the Shapley value to games with different levels of a priori unions. On the other hand, we introduce another solution for the same type of games, which extends the Banzhaf value in the same manner. We characterize these two values using logically comparable properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Essence project a 17-member ensemble simulation of climate change in response to the SRES A1b scenario has been carried out using the ECHAM5/MPI-OM climate model. The relatively large size of the ensemble makes it possible to accurately investigate changes in extreme values of climate variables. Here we focus on the annual-maximum 2m-temperature and fit a Generalized Extreme Value (GEV) distribution to the simulated values and investigate the development of the parameters of this distribution. Over most land areas both the location and the scale parameter increase. Consequently the 100-year return values increase faster than the average temperatures. A comparison of simulated 100-year return values for the present climate with observations (station data and reanalysis) shows that the ECHAM5/MPI-OM model, as well as other models, overestimates extreme temperature values. After correcting for this bias, it still shows values in excess of 50°C in Australia, India, the Middle East, North Africa, the Sahel and equatorial and subtropical South America at the end of the century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A statistical methodology is proposed and tested for the analysis of extreme values of atmospheric wave activity at mid-latitudes. The adopted methods are the classical block-maximum and peak over threshold, respectively based on the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD). Time-series of the ‘Wave Activity Index’ (WAI) and the ‘Baroclinic Activity Index’ (BAI) are computed from simulations of the General Circulation Model ECHAM4.6, which is run under perpetual January conditions. Both the GEV and the GPD analyses indicate that the extremes ofWAI and BAI areWeibull distributed, this corresponds to distributions with an upper bound. However, a remarkably large variability is found in the tails of such distributions; distinct simulations carried out under the same experimental setup provide sensibly different estimates of the 200-yr WAI return level. The consequences of this phenomenon in applications of the methodology to climate change studies are discussed. The atmospheric configurations characteristic of the maxima and minima of WAI and BAI are also examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present an extension of the generalized Birnbaum-Saunders distribution family introduced in [Diaz-Garcia, J.A., Leiva-Sanchez, V., 2005. A new family of life distributions based on the contoured elliptically distributions. Journal of Statistical Planning and Inference 128 (2), 445-457] with a view to make it even more flexible in terms of its kurtosis coefficient. Properties involving moments and asymmetry and kurtosis indexes are studied for some special members of this family such as the slash Birnbaum-Saunders and slash-t Birnbaum-Saunders. Simulation studies for some particular cases and a real data analysis are also reported, illustrating the usefulness of the extension considered. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.