900 resultados para Generalized Gaussian-noise
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.
Resumo:
We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.
Resumo:
In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.
Resumo:
Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.
Resumo:
A solar power satellite is paid attention to as a clean, inexhaustible large- scale base-load power supply. The following technology related to beam control is used: A pilot signal is sent from the power receiving site and after direction of arrival estimation the beam is directed back to the earth by same direction. A novel direction-finding algorithm based on linear prediction technique for exploiting cyclostationary statistical information (spatial and temporal) is explored. Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property, corresponding to the underlying periodicity arising from carrier frequencies or baud rates. The problem was solved by using both cyclic second-order statistics and cyclic higher-order statistics. By evaluating the corresponding cyclic statistics of the received data at certain cycle frequencies, we can extract the cyclic correlations of only signals with the same cycle frequency and null out the cyclic correlations of stationary additive noise and all other co-channel interferences with different cycle frequencies. Thus, the signal detection capability can be significantly improved. The proposed algorithms employ cyclic higher-order statistics of the array output and suppress additive Gaussian noise of unknown spectral content, even when the noise shares common cycle frequencies with the non-Gaussian signals of interest. The proposed method completely exploits temporal information (multiple lag ), and also can correctly estimate direction of arrival of desired signals by suppressing undesired signals. Our approach was generalized over direction of arrival estimation of cyclostationary coherent signals. In this paper, we propose a new approach for exploiting cyclostationarity that seems to be more advanced in comparison with the other existing direction finding algorithms.
Resumo:
The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose–Chaudhuri–Hocquenghem (BCH) codes. The block interleavers are specifically optimized for differential quadrature phase shift keying modulation. We propose a method for selecting BCH codes that, together with the interleavers, achieve a target post-FEC bit error rate (BER). This combination of interleavers and BCH codes has very low implementation complexity. In addition, our approach is straightforward, requiring only short pre-FEC simulations to parameterize a model, based on which we select codes analytically. We aim to correct a pre-FEC BER of around (Formula presented.). We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of (Formula presented.), codes selected using our method result in BERs around 3(Formula presented.) target and achieve the target with around 0.2 dB extra signal-to-noise ratio.
Calculation of mutual information for nonlinear communication channel at large signal-to-noise ratio
Resumo:
Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications - the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.
Resumo:
This work studies the turbo decoding of Reed-Solomon codes in QAM modulation schemes for additive white Gaussian noise channels (AWGN) by using a geometric approach. Considering the relations between the Galois field elements of the Reed-Solomon code and the symbols combined with their geometric dispositions in the QAM constellation, a turbo decoding algorithm, based on the work of Chase and Pyndiah, is developed. Simulation results show that the performance achieved is similar to the one obtained with the pragmatic approach with binary decomposition and analysis.
Resumo:
Exact closed-form expressions are obtained for the outage probability of maximal ratio combining in η-μ fadingchannels with antenna correlation and co-channel interference. The scenario considered in this work assumes the joint presence of background white Gaussian noise and independent Rayleigh-faded interferers with arbitrary powers. Outage probability results are obtained through an appropriate generalization of the moment-generating function of theη-μ fading distribution, for which new closed-form expressions are provided.
Resumo:
The analysis of multiexponential decays is challenging because of their complex nature. When analyzing these signals, not only the parameters, but also the orders of the models, have to be estimated. We present an improved spectroscopic technique specially suited for this purpose. The proposed algorithm combines an iterative linear filter with an iterative deconvolution method. A thorough analysis of the noise effect is presented. The performance is tested with synthetic and experimental data.
Resumo:
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
Resumo:
The objective of this paper is to introduce a fourth-order cost function of the displaced frame difference (DFD) capable of estimatingmotion even for small regions or blocks. Using higher than second-orderstatistics is appropriate in case the image sequence is severely corruptedby additive Gaussian noise. Some results are presented and compared to those obtained from the mean kurtosis and the mean square error of the DFD.
Resumo:
In this paper we develop a new linear approach to identify the parameters of a moving average (MA) model from the statistics of the output. First, we show that, under some constraints, the impulse response of the system can be expressed as a linear combination of cumulant slices. Then, thisresult is used to obtain a new well-conditioned linear methodto estimate the MA parameters of a non-Gaussian process. Theproposed method presents several important differences withexisting linear approaches. The linear combination of slices usedto compute the MA parameters can be constructed from dif-ferent sets of cumulants of different orders, providing a generalframework where all the statistics can be combined. Further-more, it is not necessary to use second-order statistics (the autocorrelation slice), and therefore the proposed algorithm stillprovides consistent estimates in the presence of colored Gaussian noise. Another advantage of the method is that while mostlinear methods developed so far give totally erroneous estimates if the order is overestimated, the proposed approach doesnot require a previous estimation of the filter order. The simulation results confirm the good numerical conditioning of thealgorithm and the improvement in performance with respect to existing methods.
Resumo:
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).