994 resultados para Gastric acid secretion
Resumo:
BACKGROUND: Gastric and duodenal bacterial overgrowth frequently occurs in conditions where diminished acid secretion is present. Omeprazole inhibits acid secretion more effectively than cimetidine and might therefore more frequently cause bacterial overgrowth. AIM: This controlled prospective study compared the incidence of gastric and duodenal bacterial overgrowth in patients treated with omeprazole or cimetidine. METHODS: 47 outpatients with peptic disease were randomly assigned to a four week treatment regimen with omeprazole 20 mg or cimetidine 800 mg daily. Gastric and duodenal juice were obtained during upper gastrointestinal endoscopy and plated for anaerobic and aerobic organisms. RESULTS: Bacterial overgrowth (> or = 10(5) cfu/ml) was present in 53% of the patients receiving omeprazole and in 17% receiving cimetidine (p < 0.05). The mean (SEM) number of gastric and duodenal bacterial counts was 6.0 (0.2) and 5.0 (0.2) respectively in the omeprazole group and 4.0 (0.2) and 4.0 (0.1) in the cimetidine group (p < 0.001 and < 0.01; respectively). Faecal type bacteria were found in 30% of the patients with bacterial overgrowth. Basal gastric pH was higher in patients treated with omeprazole compared with cimetidine (4.2 (0.5) versus 2.0 (0.2); p < 0.001) and in patients with bacterial overgrowth compared with those without bacterial overgrowth (5.1 (0.6) versus 2.0 (0.1); p < 0.0001). The nitrate, nitrite, and nitrosamine values in gastric juice did not increase after treatment with either cimetidine or omeprazole. Serum concentrations of vitamin B12, beta carotene, and albumin were similar before and after treatment with both drugs. CONCLUSIONS: These results show that the incidence of gastric and duodenal bacterial overgrowth is considerably higher in patients treated with omeprazole compared with cimetidine. This can be explained by more pronounced inhibition of gastric acid secretion. No patient developed signs of malabsorption or an increase of N-nitroso compounds. The clinical significance of these findings needs to be assessed in studies with long-term treatment with omeprazole, in particular in patients belonging to high risk groups such as HIV infected and intensive care units patients.
Resumo:
Glucagon-like peptide-1(7-36)amide (tGLP-1), oxyntomodulin (OXM), and glucagon are posttranslational end products of the glucagon gene expressed in intestinal L-cells. In vivo, these peptides are potent inhibitors of gastric acid secretion via several pathways, including stimulation of somatostatin release. We have examined the receptors through which these peptides stimulate somatostatin secretion using the somatostatin-secreting cell line RIN T3. tGLP-1, OXM, and glucagon stimulated somatostatin release and cAMP accumulation in RIN T3 cells to similar maximum levels, with ED50 values close to 0.2, 2, and 50 nM and 0.02, 0.3, and 8 nM, respectively. Binding of [125I]tGLP-1, [125I]OXM, and [125I]glucagon to RIN T3 plasma membranes was inhibited by the three peptides, with relative potencies as follows: tGLP-1 > OXM > glucagon. Whatever the tracer used, the IC50 for tGLP-1 was close to 0.15 nM and was shifted rightward for OXM and glucagon by about 1 and 2-3 orders of magnitude, respectively. Scatchard analyses for the three peptides were compatible with a single class of receptor sites displaying a similar maximal binding close to 2 pmol/mg protein. In the hamster lung fibroblast cell line CCL39 transfected with the receptor for tGLP-1, binding of [125I]tGLP-1 was inhibited by tGLP-1, OXM, and glucagon, with relative potencies close to those obtained with RIN T3 membranes. Chemical cross-linking of [125I]tGLP-1, [125I]OXM, and [125I]glucagon revealed a single band at 63,000 mol wt, the intensity of which was dose-dependently reduced by all three peptides. These data suggest that in the somatostatin-secreting cell line RIN T3, OXM and glucagon stimulate somatostatin release through a tGLP-1-preferring receptor. This suggests that some biological effects, previously described for these peptides, might be due to their interaction with this receptor.
Resumo:
The plants belonging to Pfaffia genus are used in folk medicine to treat gastric disturbances. This study examined the effects of an aqueous extract of Pfaffia glomerata (Spreng) Pedersen (AEP) on the gastrointestinal tract. Wistar rats were pretreated orally (p.o.) with the AEP (125, 250, 500 and 1000 mg.kg(-1)) before induction of ulcers by hypothermic restraint stress (HRS, 3 h restraint stress at 4 degreesC), ethanol (ET, 70%; 0.5 ml/animal; p.o.) or indomethacin (IND, 20 mg.kg(-1); s.c.). Control animals received water (C) or ranitidine (60 mg.kg(-1)) p.o. The AEP protected rats against HRS and ET-induced ulcers, but was not able to protect the gastric mucosa against IND-induced ulcers. When injected into the duodenal lumen, the AEP reduced total acidity and both basal and histamine-stimulated acid secretion in pylorus-ligated rats. In addition, gastric secretion from AEP-treated animals exhibited increased concentrations of nitrite and nitrate. Treatment of animals with L-NAME (120 mg.kg(-1), p.o.) prevented both the reduction of total acidity and the increase in NO, levels promoted by AEP treatment. In conclusion, AEP effectively protected the gastric mucosa and inhibited gastric acid secretion in rats, probably by involving the histaminergic pathway and an enhanced production of nitric oxide in the stomach. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not P-CO2, during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol 1(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial P-CO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial P-CO2. The increased arterial P-CO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial P-CO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than P-CO2 normally affects chemoreceptor activity and ventilatory drive.
Resumo:
omeprazole is a substituted benzimidazole which suppresses gastric-acid secretion by means of H+, K+-ATPase inhibition. It is an optically active drug with the sulfur of the sulfoxide being the chiral center. This pro-drug can be easily converted into its respective sulfenamide at low pH. In this work, omeprazole has been studied in relation to racemization barrier and decomposition reaction. Quantum chemistry coupled to PCA chemometric method were used to find all minimum energy structures. Conformational analysis and calculation of racemization barriers were carried out by PM3 semiempirical method (Gaussian 98). The average racemization energy barrier for all minimum energy structures (43.56 kcal mol(-1)) can be related to the velocity constant in Eyring's equation. The enormous half-life time at 100 degrees C (9.04 x 10(4) years) indicates that the process cannot be observed in human time scale. on the other hand, the difference of free energy change (Delta(Delta G) = -266.78 kcal mol(-1)) for the decomposition reaction shows that the process is favorable to the sulfenamide formation. The highly negative Delta(Delta G) obtained for the decomposition reaction shows that this process is extremely exothermic. This result explains why omeprazole decomposes and does not racemize. (C) 2008 Wiley Periodicals, Inc.
Resumo:
In conformational analysis, the systematic search method completely maps the space but suffers from the combinatorial explosion problem because the number of conformations increases exponentially with the number of free rotation angles. This study introduces a new methodology of conformational analysis that controls the combinatorial explosion. It is based on a dimensional reduction of the system through the use of principal component analysis. The results are exactly the same as those obtained for the complete search but, in this case, the number of conformations increases only quadratically with the number of free rotation angles. The method is applied to a series of three drugs: omeprazole. pantoprazole, lansoprazole-benzimidazoles that suppress gastric-acid secretion by means of H(+), K(+)-ATPase enzyme inhibition. (C) 2002 John Wiley Sons. Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The peptide hormone gastrin was long believed to be specific for higher vertebrates, whereas its homologue, cholecystokinin (CCK), has been assumed to represent the original ancestor of the CCK/gastrin family. To trace the divergence of the CCK/gastrin family beyond birds, reptiles, and amphibians we have now examined sharks. Distinct CCK and gastrin peptides were identified in two shark species, the spiny dogfish (Squalus acanthias) and the porbeagle (Lamna cornubica). The corresponding genes and cDNAs were isolated and sequenced from the spiny dogfish. Comparison with several vertebrate species show that the CCK gene and peptide structures have been considerably more conserved than the corresponding gastrin structures. Alignment of the dogfish prepropeptides displays similarities that support the hypothesis that they share a common ancestor. Our findings move the CCK/gastrin family segregation back to at least 350 million years ago. This event must have occurred before, or perhaps during, the evolution of cartilagenous fishes, probably concomitant with the occurrence of gastric acid secretion.
Resumo:
Baccharus triptera Mart, is a widespread Compositae used in Brazilian folk medicine to treat gastrointestinal disturbances, rheumatic disease, mild fever, diabetes and as an anti-helminthic. Water extract of small branches of the plant (WE) administered to mice and rats (0.1 to 2 g/Kg, p.o) did not alter spontaneous motor activity, sleeping time induced by barbiturates or the tailflick response in mice. The extract decreased by 40 por cento the number of writhings induced by 0.8 por cento scetic acid, i.p., but did not influence paw edema induced by carrageenan or dextran in rats WE (2g/Kg, p.o.) decreased the intestinal transit of charcoal in mice by 20//. Gastric secretion in pylorus ligated rats was reduced after treatment with WE (1 and 2 g/Kg. i.p. or intraduodenal and the gastric pH was raised. The extract (1 g/Kg, p.o.) prevented gastric ulcers induced in rats by immobilization at 4ºC, but not those induced by indomethacin (10 mg/Kg, s.c.). The results indicate that WE may relieve gastrointestinal disorders by reducing acid secretion and gastrointestinal hiperactivity. Neither analgesic nor anti-inflammatory activities were detectable.
Resumo:
Coleus barbatus (Labiatae) Benth is popularly used in Brazil "for the healing of liver and stomach diseases". The water extract (WE 1 to 10 g/Kg, p.o.) of stem and leaves given to rats and mice did not induce signs of intoxication. Preveious treatment of mice with WE (1 g/kg, p.o.) shortened the sleeping time induced by pentobarbital (50 mg/Kg, i.p.) by 37 por cento, althoyugh the extract alone did not increase the spontaneous activity nor did it induce hyperexcitability. In mice WE (2 g/Kg, p.o.) increased the intestinal transit of charcoal by 30 por cento, while reduced gastric secretions ion rats treated with WE (2g/Kg intraduodenal) 3,9 ± 1.0 to 0.5 ± 0.2 ml/4h, respectively). The treatment also reduced the total acid secretion from 34.4 ± 11.0 to 2.7 ± 0.5 mEq/l and raisedgastric pH from 2.2 ± 0.3 to 6.5 ± 0.8. Treatment with WE (2g/Kg, p.o.) protected against gastric ulcers induced by stress (5.3 ± 1.6 and 1.5 ± 0.5 ulcers/cm²), but did nor protect against indonethacin induced ulcers. The results show that the water extract of C barbatus Benth produces mild stimulation of thecentral nervous system and increases intestinal movements. The extract also reduces gastric secretion indicating an antidyspeptic activity, and protects against gastric ulcers induced by stress.
Resumo:
Gastric lipase (HGL) contributes significantly to fat digestion. However, little is known about its neurohormonal regulation in humans. We studied the role of CCK and cholinergic mechanisms in the postprandial regulation of HGL and pancreatic lipase (HPL) secretion in six healthy subjects. Gastric emptying of a mixed meal and outputs of HGL, pepsin, acid, and HPL were determined with a double-indicator technique. Three experiments were performed in random order: intravenous infusion of 1) placebo, 2) low-dose atropine (5 micrograms.kg-.h-1), and 3) the CCK-A receptor antagonist loxiglumide (22 mumol.kg-.h-1). Atropine decreased postprandial outputs of HGL, pepsin, gastric acid, and HPL (P < 0.03) while slowing gastric emptying (P < 0.05). Loxiglumide markedly increased the secretion of HGL, pepsin, and acid while distinctly reducing HPL outputs and accelerating gastric emptying (P < 0.03). Plasma CCK and gastrin levels increased during loxiglumide infusion (P < 0.03). Atropine enhanced gastrin but not CCK release. Postprandial HGL, pepsin, and acid secretion are under positive cholinergic but negative CCK control, whereas HPL is stimulated by cholinergic and CCK mechanisms. We conclude that CCK and cholinergic mechanisms have an important role in the coordination of HGL and HPL secretion to optimize digestion of dietary lipids in humans.