981 resultados para Gas measurement


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A technique is presented for measuring the exhaust gas recirculation (EGR) and residual gas fraction (RGF) using a fast UEGO based O2 measurement of the manifold or in-cylinder gases, and of the exhaust gases. The technique has some advantages over the more common CO2-based method. In the case of an RGF measurement, fuel interference must be eliminated and special fuelling arrangements are is required. It is shown how a UEGO-based measurement, though sensitive to reactive species in the exhaust (such as H 2), as a system reports EGR/ RGF rates faithfully. Preliminary tests showed that EGR and RGF measurements using the O2 approach agreed well with CO2-based measurements. Copyright © 2011 SAE International.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel method of measuring cylinder gas temperature in an internal combustion engine cylinder is introduced. The physical basis for the technique is that the flow rate through an orifice is a function of the temperature of the gas flowing through the orifice. Using a pressure transducer in the cylinder, and another in a chamber connected to the cylinder via an orifice, it is shown how the cylinder temperature can be determined with useful sensitivity. In this paper the governing equations are derived, which show that the heat transfer characteristics of the chamber are critical to the performance of the system, and that isothermal or adiabatic conditions give the optimum performance. For a typical internal combustion engine, it is found that the pre-compression cylinder temperature is related to the chamber pressure late in the compression process with sensitivity of the order of 0.005 bar/K. Copyright © 2010 SAE International.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dichlorosilane, a gas at normal temperature with a boiling point of 8.3 degrees C, is very difficult to sample and detect using conventional methods. We reduced phosphorus in dichlorosilane to PH3 by hydrogen at high temperature, then PH3 was separated from chlorosilanes by NaOH solution and from other hydrides by chromatographic absorption. Thus the problem of interference of chlorosilanes and other hydrides was overcome and PH, was measured by a double flame photometric detector at 526 nm. This method was sensitive, reliable and convenient and the sensitivity reached as low as 0.04 mu g/l.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The harsh environment presented by engines, particularly in the exhaust systems, often necessitates the use of robust and therefore low bandwidth temperature sensors. Consequently, high frequencies are attenuated in the output. One technique for addressing this problem involves measuring the gas temperature using two sensors with different time-constants and mathematically reconstructing the true gas temperature from the resulting signals. Such a technique has been applied in gas turbine, rocket motor and combustion research. A new reconstruction technique based on difference equations has been developed and its effectiveness proven theoretically. The algorithms have been successfully tested and proven on experimental data from a rig that produces cyclic temperature variations. These tests highlighted that the separation of the thermocouple junctions must be very small to ensure that both sensors are subjected to the same gas temperatures. Exhaust gas temperatures were recorded by an array of thermocouples during transient operation of a high performance two-stroke engine. The results show that the increase in bandwidth arising from the dual sensor technique allowed accurate measurement of exhaust gas temperature with relatively robust thermocouples. Finally, an array of very fine thermocouples (12.5 - 50 microns) was used to measure the in-cycle temperature variation in the exhaust.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SMPS and DMS500 analysers were used to measure particulate size distributions in the exhaust of a fully annular aero gas turbine engine at two operating conditions to compare and analyse sources of discrepancy. A number of different dilution ratio values were utilised for the comparative analysis, and a Dekati hot diluter operating at a temperature of 623°K was also utilised to remove volatile PM prior to measurements being made. Additional work focused on observing the effect of varying the sample line temperatures to ascertain the impact. Explanations are offered for most of the trends observed, although a new, repeatable event identified in the range from 417°K to 423°K – where there was a three order of magnitude increase in the nucleation mode of the sample – requires further study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a simple and accessible Teflon AF-2400 based tube-intube reactor, a series of pyrroles were synthesised in flow using the Paal–Knorr reaction of 1,4-diketones with gaseous ammonia. An inline flow titration technique allowed measurement of the ammonia concentration and its relationship to residence time and temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed. Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis covers the correction, and verification, development, and implementation of a computational fluid dynamics (CFD) model for an orifice plate meter. Past results were corrected and further expanded on with compressibility effects of acoustic waves being taken into account. One dynamic pressure difference transducer measures the time-varying differential pressure across the orifice meter. A dynamic absolute pressure measurement is also taken at the inlet of the orifice meter, along with a suitable temperature measurement of the mean flow gas. Together these three measurements allow for an incompressible CFD simulation (using a well-tested and robust model) for the cross-section independent time-varying mass flow rate through the orifice meter. The mean value of this incompressible mass flow rate is then corrected to match the mean of the measured flow rate( obtained from a Coriolis meter located up stream of the orifice meter). Even with the mean and compressibility corrections, significant differences in the measured mass flow rates at two orifice meters in a common flow stream were observed. This means that the compressibility effects associated with pulsatile gas flows is significant in the measurement of the time-varying mass flow rate. Future work (with the approach and initial runs covered here) will provide an indirect verification of the reported mass flow rate measurements.