978 resultados para Gas Chromatography coupled with Nitrogen-Phosphorus Detector
Resumo:
A rapid, sensitive and specific method for quantifying ciprofibrate in human plasma using bezafibrate as the internal standard (IS) is described. The sample was acidified prior extraction with formic acid (88%). The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (diethyl ether/dichloromethane 70/30 (v/v)). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS). Chromatography was performed using Genesis C18 4 mu m analytical column (4.6 x 150 mm i.d.) and a mobile phase consisting of acetonitrile/water (70/30, v/v) and 1 mM acetic acid. The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 0.1-60 mu g/mL (r > 0.99). The limit of quantification was 0.1 mu g/mL. The intra- and interday accuracy and precision values of the assay were less than 13.5%. The stability tests indicated no significant degradation. The recovery of ciprofibrate was 81.2%, 73.3% and 76.2% for the 0.3, 5.0 and 48.0 ng/mL standard concentrations, respectively. For ciprofibrate, the optimized parameters of the declustering potential, collision energy and collision exit potential were -51 V, -16 eV and -5 V, respectively. The method was also validated without the use of the internal standard. This HPLC-MS/MS procedure was used to assess the bioequivalence of two ciprofibrate 100 mg tablet formulations in healthy volunteers of both sexes. The following pharmacokinetic parameters were obtained from the ciprofibrate plasma concentration vs. time curves: AUC(last), AUC(0-168 h), C(max) and T(max). The geometric mean with corresponding 90% confidence interval (CI) for test/reference percent ratios were 93.80% (90% CI = 88.16-99.79%) for C(max), 98.31% (90% CI = 94.91-101.83%) for AUC(last) and 97.67% (90% CI = 94.45-101.01%) for AUC(0-168 h). Since the 90% Cl for AUC(last), AUC(0-168 h) and C(max) ratios were within the 80-125% interval proposed by the US FDA, it was concluded that ciprofibrate (Lipless (R) 100 mg tablet) formulation manufactured by Biolab Sanus Farmaceutica Ltda. is bioequivalent to the Oroxadin (R) (100 mg tablet) formulation for both the rate and the extent of absorption. (C) 2011 Published by Elsevier B.V.
Resumo:
A rational and selective method using on-line high-performance liquid chromatography (HPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QToF-MS/MS) was established for the dereplication of phenolic derivatives from Qualea grandiflora and Qualea cordata. The selection of the extracts was based on the antioxidant capacity measured by in vitro DPPH assay. The HPLC-ESI-QToF-MS/MS analysis was conducted by on-flow detection, using high-resolution mass/ratio ions as well as collision induced MS/MS experiments for selected protonated ions. The dereplication of the EtOAc fraction from the hydro alcohol extract from the stem bark of Q. grandiflora allowed the detection of the flavonoids: 3',4',5',5,6,7-hexahydroxy- 8 methylflavanone, 8-methyl-naringenine and 3',7-dimethoxy-8 methyl-4',5,7- trihydroxyflavanone, as well as a benzophenone derivatives: bis(4,6-dimethoxy-2- hydroxy-3-methylphenyl)- metanone, 3',4'-dimethoxy-8-methyl-5,6,7 trihydroxyflavanone, 7-methoxy-6-methyl- 3',4',5 trihydroxyflavanone, 6,8-dimethyl-3' methoxy-4',5,7 trihydroxyflavanone and 3',5'-dimethoxy-6,8- dimethyl-4',5,7 trihydroxyflavanone were detected in the EtOAc fraction from the hydro-alcohol extract from the leaves of Q. cordata. © 2013 Sociedade Brasileira de Química.
Resumo:
The nutritional management of seedlings in the nursery is one of the most important practices that influence seedling quality. The aim of this work was to evaluate the effect of nitrogen, phosphorus and potassium on the development of Schizolobium amazonicum seedlings grown in 250 cm(3) containers with a commercial substrate in the North of Mato Grosso State, Brazil. The experimental design was completely randomized design with five treatments and five replications, each replication being represented by 24 seedlings. The treatments were: control (only commercial substrate); nitrogen fertilization (150 g m(-3) N using ammonium sulfate + 1.0 kg of ammonium sulfate dissolved in 100 L of water and applied in coverage); phosphorus fertilization (300 g P2O5 m(-3) using simple superphosphate); potassium fertilization (100 g m(-3) K2O using potassium chloride + 0.3 kg of potassium chloride dissolved in 100 L of water and applied in coverage) and; complete (a mixture of the three nutrients, 150, 300 and 100 g m(-3) N, P2O5 and K2O, respectively + 1.0 kg of ammonium sulfate + 0.3 kg of potassium chloride). The commercial substrate was composted milled pine bark plus vermiculite. Evaluations of the seedlings were performed at 90 days after sowing. The complete treatment (NPK) gave the highest values for biometric and best plant indices, which express the quality. When analyzing nutrients in isolation; potassium had the lowest effect. Based on these results it can be recommended to fertilize Schizolobium amazonicum seedlings in nurseries with 150, 300 and 100 g m(-3) of N, P2O5 and K2O, respectively, plus 1.0 kg of sulfate ammonium and 0.3 kg of potassium chloride applied in coverage.
Resumo:
A rapid, sensitive and specific method for quantifying hydroxocobalamin in human plasma using paracetamol as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethanol 100%; -20°C). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on Prevail C8 3 μm, analytical column (2.1×100 mm i.d.). The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 5-400 ng.mL-1 (r>0.9983). The limit of quantification was 5 ng.mL-1. The method was also validated without the use of the internal standard. The precision in the intra-batch validation with IS was 9.6%, 8.9%, 1.0% and 2.8% whereas without IS was 9.2%, 8.2%, 1.8% and 1.5% for 5, 15, 80 and 320 ng/mL, respectively. The accuracy in intra-batch validation with IS was 108.9%, 99.9%, 98.9% and 99.0% whereas without IS was 101.1%, 99.3%, 97.5% and 92.5% for 5, 15, 80 and 320 ng/mL, respectively. The precision in the inter-batch validation with IS was 9.4%, 6.9%, 4.6% and 5.5% whereas without IS was 10.9%, 6.4%, 5.0% and 6.2% for 5, 15, 80 and 320 ng/mL, respectively. The accuracy in inter-batch validation with IS was 101.9%, 104.1%, 103.2% and 99.7% whereas without IS was 94.4%, 101.2%, 101.6% and 96.0% for 5, 15, 80 and 320 ng/mL, respectively. This HPLC-MS-MS procedure was used to assess the pharmacokinetics of Hydroxo cobalamin following intramuscular injection 5000 μg in healthy volunteers of both sexes (10 males and 10 females). The volunteers had the following clinical characteristics (according to gender and expressed as mean ± SD [range]): males: age: 32.40 ± 8.00 y [23.00-46.00], height: 1.73 ± 0.07 m [1.62-1.85], body weight: 72.48 ± 10.22 Kg [60.20- 88.00]; females: age: 28.60 ± 9.54 y [18.00-44.00], height: 1.60 ± 0.05 m [1.54-1.70], body weight: 58.64 ± 6.09 Kg [51.70- 66.70]. The following pharmacokinetic parameters were obtained from the hydroxocobalamin plasma concentration vs. time curves: AUClast, T1/2, Tmax, Vd, Cl, Cmax and Clast. The pharmacokinetic parameters were 120 (± 25) ng/mL for Cmax, 2044 (± 641) ng.h/mL for AUClast, 8 (± 3.2) ng.mL-1 for Clast, 38 (± 15.8) hr for T1/2 and 2.5 (range 1-6) hr for Tmax. Female volunteers presented significant (p=0.0136) lower AUC (1706 ± 704) ng.h/mL) and larger (p=0.0205) clearance (2.91 ± 1.41 L/hr), as compared to male 2383 ± 343 ng.h/mL and 1.76 ± 0.23 L/hr, respectively. These pharmacokinetic differences could explain the higher prevalence of vitamin B12 deficiency in female patients. The method described validated well without the use of the internal standard and this approach should be investigated in other HPLC-MS-MS methods.
Resumo:
The larger of two diuretic hormones of the tobacco hornworm, Manduca sexta, (Mas-DH) is a peptide of 41 residues. It is one of a family of seven currently known insect diuretic hormones that are similar to the corticotropin-releasing factor–urotensin–sauvagine family of peptides. We investigated the possible inactivation of Mas-DH by incubating it in vitro with larval Malpighian tubules (Mt), the target organ of the hormone. The medium was analyzed, and degradation products were identified, using on-line microbore reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry (RPLC-ESI-MS). This sensitive technique allows identification of metabolites of Mas-DH (present at an initial level of ≈1 μM). An accurate Mr value for a metabolite is usually sufficient for unambiguous identification. Mas-DH is cleaved by Mt proteases initially at L29–R30 and R30–A31 under our assay conditions; some Mas-DH is also oxidized, apparently at M2 and M11. The proteolysis can be inhibited by 5 mM EDTA, suggesting that divalent metals are needed for peptide cleavage. The oxidation of the hormone can be inhibited by catalase or 1 mM methionine, indicating that H2O2 or related reactive oxygen species are responsible for the oxidative degradation observed. RPLC-ESI-MS is shown here to be an elegant and efficient method for studying peptide hormone metabolism resulting from unknown proteases and pathways.
Resumo:
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A tecnologia de barreiras reactivas é uma alternativa possível de ser implementada para tratamento de águas contaminadas com compostos organoclorados, nomeadamente o tricloroetileno (TCE). O recurso a ferro zerovalente (Fe0) como meio reactivo tem na actualidade inúmeras aplicações, tratando-se de uma reacção de desalogenação por mecanismo de oxidação-redução. Neste trabalho fizeram-se estudos em batch da reacção entre o Fe0 e o TCE de forma a conhecer os parâmetros cinéticos. A natureza e a área da superfície do ferro provaram ser determinantes na velocidade da reacção. Foi possível verificar que para o sistema ferro comercial / TCE a ordem da reacção é inferior a um, e a constante cinética da ordem de 10-2 Lm-2h-1. Para simular uma barreira reactiva, projectaram-se e construíram-se colunas, as quais foram cheias com areia e ferro depois de devidamente misturados, uma vez que se tratou da disposição a que corresponderam melhores eficiências de redução do TCE. Não foi possível estabelecer o mecanismo da reacção, nem conhecer os parâmetros cinéticos, pelas dificuldades experimentais encontradas na análise do TCE e pelo facto de se tratar de uma reacção muito lenta. A cromatografia gasosa com detector de ionização de chama provou ser o método mais apropriado para doseamento do TCE em águas contaminadas, nas condições usadas neste estudo. A elevada volatilização do TCE e a baixa solubilidade em água contribuíram para as dificuldades operacionais encontradas.
Resumo:
Eruca sativa (rocket salad) has been intensely consumed all over the world, insomuch as, this work was undertaken to evaluate the antioxidant status and the environmental contamination (positive and negative nutritional contribution) of leaves and stems from this vegetable. Antioxidant capacity of rocket salad was assessed by mean of optical methods, such as the total phenolic content (TPC), reducing power assay and DPPH radical scavenging activity. The extent of the environmental contamination was reached through the quantification of thirteen organochlorine pesticides (OCP) by using gas chromatography coupled with electron-capture detector (GC-ECD) and compound confirmations employing gas chromatography tandem mass-spectrometry (GC-MS/MS). The OCP residues were extracted by using Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) methodology.The extent of the environmental contamination was reached through the quantification of thirteen OCP by using gas chromatography coupled with electron-capture detector (GC-ECD) and compound confirmations employing GC-MS/MS. The OCP residues were extracted by using Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) methodology. This demonstrated that leaves presented more antioxidant activity than stems, emphasizing that leaves contained six times more polyphenolic compounds than stems. In what concerns the OCP occurrence, the average recoveries obtained at the three levels tested (40, 60 and 80 µg kg−1) ranged from 55% to 149% with a relative standard deviation of 11%, (except hexachrorobenzene). Three vegetables samples were collected from supermarkets and analysed following this study. According to data, only one sample achieved 16.21 of β-hexachlorocyclohexane, confirmed by GC-MS/MS. About OCP quantification, the data indicated that only one sample achieved 16.21 µg kg−1 of β-hexachlorocyclohexane, confirmed by GC-MS/MS, being the QuEChERS a good choice for the of OCPs extraction. Furthermore, the leaves consumption guaranty higher levels of antioxidants than stems.
Resumo:
Objectives: Ethanol is well-known to impair driving ability. The major aim of this study was to evaluate the number of drivers driving under the influence of ethanol in a population of randomly controlled drivers. Methods: 1016 drivers were randomly controlled at 27 different locations in Western Switzerland from October 2006 to April 2008. Drivers were controlled for alcohol consumption with a breathalyzer according to the Swiss Road traffic law. If the result was equal or higher than an equivalent of a blood alcohol concentration of 0.8 g/kg, a blood sample was taken; otherwise, a saliva sample was obtained. Blood and saliva were analysed for ethanol by Head-space gas chromatography coupled with a FID detector. Results: Among the controlled drivers, men (69%) predominated over female (31%). The mean age was 41 (range: 16 90). For 968 drivers (95.3%) ethanol was not detected in blood or saliva. These drivers were not under the influence of ethanol. Ethanol was detected in saliva or blood of 48 drivers (4.7%). Among these drivers, blood alcohol concentration (BAC) was above the legal limit of 0.8 g/kg (serious offence) in 14 cases (1.4% of the total population). BAC were in the range of 0.91 to 2.43 g/kg (mean: 1.32 g/kg, median: 1.11 g/kg). Among these 14 cases, men (13 cases, 93%) were over represented. No ethanol was found in the population of truck drivers (17 cases). 986 drivers were car drivers and 46 of them have drunk ethanol (5%). 13 bikers were controlled and 2 of them have drunk ethanol (15%). Conclusion: Driving under the influence of ethanol concerned about 5% of a population of randomly controlled drivers, and 1,4% of the drivers had a blood alcohol concentration higer than 0.8 g/kg (legale limit for a serious offence).
Resumo:
The objective of this work was to combine the advantages of the dried blood spot (DBS) sampling process with the highly sensitive and selective negative-ion chemical ionization tandem mass spectrometry (NICI-MS-MS) to analyze for recent antidepressants including fluoxetine, norfluoxetine, reboxetine, and paroxetine from micro whole blood samples (i.e., 10 microL). Before analysis, DBS samples were punched out, and antidepressants were simultaneously extracted and derivatized in a single step by use of pentafluoropropionic acid anhydride and 0.02% triethylamine in butyl chloride for 30 min at 60 degrees C under ultrasonication. Derivatives were then separated on a gas chromatograph coupled with a triple-quadrupole mass spectrometer operating in negative selected reaction monitoring mode for a total run time of 5 min. To establish the validity of the method, trueness, precision, and selectivity were determined on the basis of the guidelines of the "Société Française des Sciences et des Techniques Pharmaceutiques" (SFSTP). The assay was found to be linear in the concentration ranges 1 to 500 ng mL(-1) for fluoxetine and norfluoxetine and 20 to 500 ng mL(-1) for reboxetine and paroxetine. Despite the small sampling volume, the limit of detection was estimated at 20 pg mL(-1) for all the analytes. The stability of DBS was also evaluated at -20 degrees C, 4 degrees C, 25 degrees C, and 40 degrees C for up to 30 days. Furthermore, the method was successfully applied to a pharmacokinetic investigation performed on a healthy volunteer after oral administration of a single 40-mg dose of fluoxetine. Thus, this validated DBS method combines an extractive-derivative single step with a fast and sensitive GC-NICI-MS-MS technique. Using microliter blood samples, this procedure offers a patient-friendly tool in many biomedical fields such as checking treatment adherence, therapeutic drug monitoring, toxicological analyses, or pharmacokinetic studies.
Resumo:
A simple and fast method for determination of 40 basic drugs in human plasma employing gas-chromatography with nitrogen-phosphorus detection was developed and validated. Drugs were extracted from 800 µL of plasma with 250 µL of butyl acetate at basic pH. Aliquots of the organic extract were directly injected on a column with methylsilicone stationary phase. Total chromatographic run time was 25 min. All compounds were detected in concentrations ranging from therapeutic to toxic levels, with intermediate precision CV% below 11.2 and accuracy in the range of 92-114%.
Resumo:
O objetivo deste trabalho foi estudar a composição química das folhas de erva-mate, sob diferentes condições agronômicas e técnicas de extração. Os métodos de extração usados foram maceração, ultra-som, extração com líquido pressurizado e extração com fluído supercrítico. Foram investigadas as variáveis que podem influenciar no processo de extração, tais como temperatura, pressão, polaridade do solvente, tempo de extração, massa de amostra, entre outras. A identificação dos compostos foi realizada por cromatografia gasosa acoplada à espectrometria de massas. Todos os métodos de extração utilizados mostraram-se eficientes para a obtenção dos extratos, com as diferenças sendo mais quantitativas do que qualitativas . Entre os métodos de extração que utilizam solventes orgânicos, a extração com líquido pressurizado mostrou-se mais eficiente, produzindo maior rendimento em massa de extrato e maior concentração de alguns dos compostos de interesse, com as vantagens de redução de solvente e tempo de extração. A composição química da erva-mate é influenciada pelas condições agronômicas de plantio, bem como pelas condições de extração de suas folhas. A melhor condição agronômica avaliada, ou seja, aquela que produziu maior quantidade de extrato, foi o cultivo das plantas a pleno sol, adubadas com nitrogênio e com idade de poda de 18 meses. A variável mais importante das técnicas de extração utilizadas foi a polaridade do solvente. Solventes de maior polaridade produziram maior rendimento em extrato. A análise cromatográfica dos extratos obtidos permitiu identificar cerca de 50 compostos qualitativamente e 6 quantitativamente, destacando-se a cafeína, fitol, ácido palmítico, ácido esteárico, esqualeno e vitamina E.
Resumo:
The applicability of supercritical fluid extraction (SFE) in pesticide multiresidue analysis (organohalogen, organonitrogen, organophosphorus, and pyrethroid) in soil samples was investigated. Fortification experiments were conducted to test the conventional extraction (solid-liquid) and to optimize the extraction procedure in SFE by varying the CO2 Modifier, temperature, extraction time, and pressure. The best efficiency was achieved at 400 bar using methanol as modifier at 60 degreesC. For the SFE method, C-18 cartridges were used for the cleanup. The analytical screening was performed by gas chromatography equipped with electron-capture detection (ECD). Recoveries for the majority of pesticides from spiked samples of soil at different residence times were 1, 20, and 40 days at the fortification level of 0.04-0.10 mg/kg ranging from 70 to 97% for both methods. The detection limits found were <0.01 mg/kg for ECD, and the confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in a selected-ion monitoring mode. Multiresidue methods were applied in real soil samples, and the results of the methods developed were compared.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)