22 resultados para Galactosemia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Several physiological studies in recent years have convincingly demonstrated increased clearance of intravascular protein tracers by several different tissues, including the retina, during early diabetes and galactosemia in the rat. This change has been described as a consequence of increased permeation, although vascular leakage has not been demonstrated, and the fate of such tracers remains unelucidated. EXPERIMENTAL DESIGN: A pilot study in this laboratory showed no evidence of vascular leakage but suggested increased endocytosis of horseradish peroxidase (HRP) by retinal vascular endothelial cells (RVECs) in early diabetes. We therefore quantified RVEC endocytosis in normal, streptozotocin (STZ)-treated nondiabetic and STZ-diabetic rats using the design-based stereology method of "vertical sections." A duration of diabetes (6 weeks) was chosen to approximate the time period in which other workers have demonstrated increased protein permeation of the retina. RESULTS: After a 20-minute exposure to the tracer, HRP reaction product was observed in small vesicular and tubular endosomes and larger multivesicular bodies of the RVECs. Stereological analysis revealed a 6.5-fold increase in the volume of HRP-containing organelles in the RVECs of diabetic rats compared with STZ-treated nondiabetics or normal controls. None of the animals in this study showed HRP reaction product outside the retinal vascular endothelium. CONCLUSIONS: A highly significant increase in RVEC endocytosis occurs in early diabetes. Increased RVEC endocytosis may contribute to the observed clearance of intravascular protein tracers by the retina during early diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4'-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4'-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4'-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coil resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three alpha-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GHMP kinases are a structurally related family of small molecule kinases named after four of its members - galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase. The group also includes the enzymes N-acetylgalactosamine kinase, arabinose kinase, mevalonate 5-diphosphate decarboxylase, archeal shikimate kinase and 4-(cytidine 5'-diphospho)-2-c-methyl-D-erythritol kinase. In addition the group includes two members not known to be catalytically active, the Caenorhabditis elegans sex-fate determining protein XOL-1 and the Saccharomyces cerevisiae transcriptional activator Gal3p. Two catalytic mechanisms have been proposed for GHMP kinases. The structure of mevalonate kinase suggests that an aspartate residue acts as an active site base, removing a proton from the substrate to facilitate attack on the ? phosphate of MgATP. In contrast, in homoserine kinase there is no potential catalytic base and it is proposed that catalysis is driven by transition state stabilisation. Potential chemotherapeutic interventions against GHMP kinases fall into three main categories: inhibition of galactokinase to assist suffers of galactosemia, inhibition of mevalonate kinase or mevalonate 5-diphosphate decarboxylase to reduce flux through the cholesterol biosynthesis pathway and inhibition of bacterial GHMP kinases for novel anti-microbial therapies. These are in the early stages of development, but the accumulation of structural and mechanistic data will assist future progress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UDP-galactose 4-epimerase (GALE; EC 5.1.3.2; UniProt: Q14376) catalyses the interconversion of UDP-galactose and UDP-glucose (figure 1a). In the majority of eukaryotes studied to date, the enzyme is also able to interconvert UDP-N-acetylgalactosamine (UDP-GalNAc) and UDP-N-acetylglucosamine (UDP-GlcNAc) (figure 1b). The first of these reactions occurs as part of the Leloir pathway, which converts galactose into the glycolytic intermediate glucose 6-phosphate. Both reactions are important in the maintenance of UDP-monosaccharide pools and, consequently, in supplying raw materials for the glycosylation of proteins and lipids. The enzyme has attracted considerable research interest because mutations in the corresponding gene are associated with the genetic disease type III galactosemia (OMIN #230350). There is also some interest in using the enzyme as a biocatalyst to interconvert its substrates and related UDP-monosaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg- 228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme’s interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme’s structure and function. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014