296 resultados para Gabor Tompa
Fourier Analysis and Gabor Filtering for Texture Analysis and Local Reconstruction of General Shapes
Fourier analysis and gabor filtering for texture analysis and local reconstruction of general shapes
Resumo:
Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.
Resumo:
着色和纹理合成是图形图像中的两类基本研究课题。前者需根据用户定义的彩色笔触信息,自动对黑白照片、电影或者漫画染上颜色;后者则需根据用户输入的样本纹理,经计算得出与样本纹理视觉上近似的结果纹理。这两类课题都有广泛的应用背景。如着色常常用于给经典的黑白电影或者照片自动上色,解决现在的染色工序中存在的需要大量人工交互的难题;而纹理合成常用于电影和电子游戏的地形地貌、织物、头发等等纹理的自动生成。 这两大类问题都需要分析纹理特征,并且依赖于分析结果的准确性。Gabor小波滤波器与人眼的视觉感受野相当吻合,用它来分析纹理得到的结果比较精确。鉴于此,本文把Gabor小波应用到了着色问题和纹理合成中。对于着色问题,本文用基于Gabor小波的特征向量重新定义邻居关系,然后用最优化方法迭代地对照片和卡通染色。相比以往的算法,本算法具有用户交互少、效果好、算法简单稳健的优点,并且算法允许用户逐步地添加色彩细节。对于纹理合成,本文用基于Gabor小波的特征向量来预计算K-Coherence候选集,提高了K-Coherence算法的准确性,从而改进了纹理合成的最终效果。 本文提出的算法是天然并行的,因而可利用GPU加速,做到实时计算。
Resumo:
为解决基于数字水印的无线多媒体消息版权管理系统对提取后水印标识的自动识别问题,在充分考虑多媒体消息在传播中可能遭受攻击的基础上,提出一种基于Gabor小波特征的标识确认方案.该方案利用这类小波函数确定的滤波器适合局部分析和多方向多尺度分析的特点,提取与水印版权标识结构信息相关的统计量,形成特征集向量,通过特征集的距离比较,在小尺寸水印质量退化情况下,实现了对水印标识的识别.分析和实验表明,该方案能够满足无线多媒体消息版权管理的需求,并且在文中分析的情况下,设备的自动识别精度可以达到95%以上,较好地支持了对无线多媒体消息的版权管理.
Resumo:
为了解决黑白图像自动染色的难题,提出了一种基于Gabor小波的渐进式着色算法。该算法首先使用Gabor小波对黑白图像的纹理特征进行分析,在此基础上,根据纹理特征差异重新定义像素的邻居关系,最后利用最优化方法对染色问题进行迭代求解。该算法主要的创新点是交互操作少,并允许用户逐步添加色彩细节。同时该算法还是天然并行的,能够利用图形处理器(GPU)进行实时计算。为该算法和当今流行的着色算法做了效果对比,并且进行了效率分析,实验结果表明了该算法的可用性和效率。
Resumo:
This paper introduces a new technique for palmprint recognition based on Fisher Linear Discriminant Analysis (FLDA) and Gabor filter bank. This method involves convolving a palmprint image with a bank of Gabor filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, FLDA is applied for dimensionality reduction and class separability. Since the palmprint features are derived from the principal lines, wrinkles and texture along the palm area. One should carefully consider this fact when selecting the appropriate palm region for the feature extraction process in order to enhance recognition accuracy. To address this problem, an improved region of interest (ROI) extraction algorithm is introduced. This algorithm allows for an efficient extraction of the whole palm area by ignoring all the undesirable parts, such as the fingers and background. Experiments have shown that the proposed method yields attractive performances as evidenced by an Equal Error Rate (EER) of 0.03%.
Resumo:
A syntactical brightness model based on a multiscale line and edge representation obtained by a set of anisotropic Gabor filters is quite complex (du Buf and Fischer, 1995 Optical Engineering 34 1900-1911). Although only tested in 1-D, it was shown to yield correct brightness effects for many patterns.