974 resultados para GRAPH-THEORETIC APPROACH
Resumo:
A novel pedestrian motion prediction technique is presented in this paper. Its main achievement regards to none previous observation, any knowledge of pedestrian trajectories nor the existence of possible destinations is required; hence making it useful for autonomous surveillance applications. Prediction only requires initial position of the pedestrian and a 2D representation of the scenario as occupancy grid. First, it uses the Fast Marching Method (FMM) to calculate the pedestrian arrival time for each position in the map and then, the likelihood that the pedestrian reaches those positions is estimated. The technique has been tested with synthetic and real scenarios. In all cases, accurate probability maps as well as their representative graphs were obtained with low computational cost.
Resumo:
Mode of access: Internet.
Resumo:
Presented at the Conference on Evaluating Manpower Training Programs, May 6-7, 1976 sponsored by Industrial Relations Section, Princeton University and Office of the Assistant Secretary for Policy, Evaluation and Research, Dept. of Labor.
Distribution of benefits from multinational plants in developing countries:a game theoretic approach
Resumo:
Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.
Resumo:
International audience
Resumo:
Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid.
Resumo:
La duplication est un des évènements évolutifs les plus importants, car elle peut mener à la création de nouvelles fonctions géniques. Durant leur évolution, les génomes sont aussi affectés par des inversions, des translocations (incluant des fusions et fissions de chromosomes), des transpositions et des délétions. L'étude de l'évolution des génomes est importante, notamment pour mieux comprendre les mécanismes biologiques impliqués, les types d'évènements qui sont les plus fréquents et quels étaient les contenus en gènes des espèces ancestrales. Afin d'analyser ces différents aspects de l'évolution des génomes, des algorithmes efficaces doivent être créés pour inférer des génomes ancestraux, des histoires évolutives, des relations d'homologies et pour calculer les distances entre les génomes. Dans cette thèse, quatre projets reliés à l'étude et à l'analyse de l'évolution des génomes sont présentés : 1) Nous proposons deux algorithmes pour résoudre des problèmes reliés à la duplication de génome entier : un qui généralise le problème du genome halving aux pertes de gènes et un qui permet de calculer la double distance avec pertes. 2) Nous présentons une nouvelle méthode pour l'inférence d'histoires évolutives de groupes de gènes orthologues répétés en tandem. 3) Nous proposons une nouvelle approche basée sur la théorie des graphes pour inférer des gènes in-paralogues qui considère simultanément l'information provenant de différentes espèces afin de faire de meilleures prédictions. 4) Nous présentons une étude de l'histoire évolutive des gènes d'ARN de transfert chez 50 souches de Bacillus.
Resumo:
A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.
Resumo:
Copyright © 2014 The Authors. Oikos © 2014 Nordic Society Oikos.
Resumo:
Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (Bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker - typically a client of a forensic examination or a scientist acting on behalf of a client - ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and Bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and Bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked here also serve the purpose of supporting the discussion of the similarities, differences and complementary aspects of existing Bayesian probabilistic sampling criteria and the decision-theoretic approach proposed throughout this paper.
Resumo:
The traveling salesman problem is although looking very simple problem but it is an important combinatorial problem. In this thesis I have tried to find the shortest distance tour in which each city is visited exactly one time and return to the starting city. I have tried to solve traveling salesman problem using multilevel graph partitioning approach.Although traveling salesman problem itself very difficult as this problem is belong to the NP-Complete problems but I have tried my best to solve this problem using multilevel graph partitioning it also belong to the NP-Complete problems. I have solved this thesis by using the k-mean partitioning algorithm which divides the problem into multiple partitions and solving each partition separately and its solution is used to improve the overall tour by applying Lin Kernighan algorithm on it. Through all this I got optimal solution which proofs that solving traveling salesman problem through graph partition scheme is good for this NP-Problem and through this we can solved this intractable problem within few minutes.Keywords: Graph Partitioning Scheme, Traveling Salesman Problem.
Resumo:
Background. One of the phenomena observed in human aging is the progressive increase of a systemic inflammatory state, a condition referred to as “inflammaging”, negatively correlated with longevity. A prominent mediator of inflammation is the transcription factor NF-kB, that acts as key transcriptional regulator of many genes coding for pro-inflammatory cytokines. Many different signaling pathways activated by very diverse stimuli converge on NF-kB, resulting in a regulatory network characterized by high complexity. NF-kB signaling has been proposed to be responsible of inflammaging. Scope of this analysis is to provide a wider, systemic picture of such intricate signaling and interaction network: the NF-kB pathway interactome. Methods. The study has been carried out following a workflow for gathering information from literature as well as from several pathway and protein interactions databases, and for integrating and analyzing existing data and the relative reconstructed representations by using the available computational tools. Strong manual intervention has been necessarily used to integrate data from multiple sources into mathematically analyzable networks. The reconstruction of the NF-kB interactome pursued with this approach provides a starting point for a general view of the architecture and for a deeper analysis and understanding of this complex regulatory system. Results. A “core” and a “wider” NF-kB pathway interactome, consisting of 140 and 3146 proteins respectively, were reconstructed and analyzed through a mathematical, graph-theoretical approach. Among other interesting features, the topological characterization of the interactomes shows that a relevant number of interacting proteins are in turn products of genes that are controlled and regulated in their expression exactly by NF-kB transcription factors. These “feedback loops”, not always well-known, deserve deeper investigation since they may have a role in tuning the response and the output consequent to NF-kB pathway initiation, in regulating the intensity of the response, or its homeostasis and balance in order to make the functioning of such critical system more robust and reliable. This integrated view allows to shed light on the functional structure and on some of the crucial nodes of thet NF-kB transcription factors interactome. Conclusion. Framing structure and dynamics of the NF-kB interactome into a wider, systemic picture would be a significant step toward a better understanding of how NF-kB globally regulates diverse gene programs and phenotypes. This study represents a step towards a more complete and integrated view of the NF-kB signaling system.