944 resultados para GRAIN-GROWTH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model has been developed for evaluating grain size distributions in primary crystallizations where the grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is considered, and a modification of this is proposed to take into account interference of the diffusion profiles between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain size distribution and transformed volume fraction for transformations driven by nucleation and either interface- or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystallization of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are computed, and their properties are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually, the kinetic models used in the study of sintered ceramic are performed by means of indirect physical tests, such as, results obtained from data of linear shrinkage and mass loss. This fact is justified by the difficulty in the determinations of intrinsic parameters of ceramic materials along every sintering process. In this way, the technique of atomic force microscopy (AFM) was used in order to determine the importance and the evolution of the dihedral angle in the sintering of 0.5 mol% MnO2-doped tin dioxide obtained by the polymeric precursor method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High purity SnO 2 powder (>99.9%) was compacted in cylindrical pellets and sintered in atmospheres of dry argon, argon with water vapor, oxygen and CO 2 using 10 °C/min up to 1200 °C or isotherms in the range of 1000 to 1200 °C. Time, temperature and sintering atmosphere have large influence on grain growth and low influence on densification of this oxide. Surface diffusion is the dominant mechanism up to 1200 °C and evaporation-condensation is dominant above 1200 °C. The maximum linear shrinkage observed was about 2.0% and attributed to structural rearrangement of particles due to high capillary stresses developed with neighboring particles. © 1999 Trans Tech Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo simulations have been carried out to study the effect of temperature on the growth kinetics of a circular grain. This work demonstrates the importance of roughening fluctuations on the growth dynamics. Since the effect of thermal fluctuations is stronger in d =2 than in d =3, as predicted by d =3 theories of domain kinetics, the circular domain shrinks linearly with time as A (t)=A(0)-αt, where A (0) and A(t) are the initial and instantaneous areas, respectively. However, in contrast to d =3, the slope α is strongly temperature dependent for T≥0.6TC. An analytical theory which considers the thermal fluctuations agrees with the T dependence of the Monte Carlo data in this regime, and this model show that these fluctuations are responsible for the strong temperature dependence of the growth rate for d =2. Our results are particularly relevant to the problem of domain growth in surface science

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT-30-1-GEN-366."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal grain growth of calcite was investigated by combining grain size analysis of calcite across the contact aureole of the Adamello pluton, and grain growth modeling based on a thermal model of the surroundings of the pluton. In an unbiased model system, i.e., location dependent variations in temperature-time path, 2/3 and 1/3 of grain growth occurs during pro- and retrograde metamorphism at all locations, respectively. In contrast to this idealized situation, in the field example three groups can be distinguished, which are characterized by variations in their grain size versus temperature relationships: Group I occurs at low temperatures and the grain size remains constant because nano-scale second phase particles of organic origin inhibit grain growth in the calcite aggregates under these conditions. In the presence of an aqueous fluid, these second phases decay at a temperature of about 350 °C enabling the onset of grain growth in calcite. In the following growth period, fluid-enhanced group II and slower group III growth occurs. For group II a continuous and intense grain size increase with T is typical while the grain growth decreases with T for group III. None of the observed trends correlate with experimentally based grain growth kinetics, probably due to differences between nature and experiment which have not yet been investigated (e.g., porosity, second phases). Therefore, grain growth modeling was used to iteratively improve the correlation between measured and modeled grain sizes by optimizing activation energy (Q), pre-exponential factor (k0) and grain size exponent (n). For n=2, Q of 350 kJ/mol, k0 of 1.7×1021 μmns−1 and Q of 35 kJ/mol, k0 of 2.5×10-5 μmns−1 were obtained for group II and III, respectively. With respect to future work, field-data based grain growth modeling might be a promising tool for investigating the influences of secondary effects like porosity and second phases on grain growth in nature, and to unravel differences between nature and experiment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tensile experiments on a fine-grained single-phase Mg–Zn–Al alloy (AZ31) at 673 K revealed superplastic behavior with an elongation to failure of 475% at 1 × 10−4 s−1 and non-superplastic behavior with an elongation to failure of 160% at 1 × 10−2 s−1; the corresponding strain rate sensitivities under these conditions were 0.5 and 0.2, respectively. Measurements indicated that the grain boundary sliding (GBS) contribution to strain ξ was 30% under non-superplastic conditions; there was also a significant sharpening in texture during such deformation. Under superplastic conditions, ξ was 50% at both low and high elongations of 20% and 120%; the initial texture became more random under such conditions. In non-superplastic conditions, deformation occurred under steady-state conditions without grain growth before significant flow localization whereas, under superplastic conditions, there was grain growth during the early stages of deformation, leading to strain hardening. The grains retained equiaxed shapes under all experimental conditions. Superplastic deformation is attributed to GBS, while non-superplastic deformation is attributed to intragranular dislocation creep with some contribution from GBS. The retention of equiaxed grain shapes during dislocation creep is consistent with a model based on local recovery related to the disturbance of triple junctions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experiments in controlled environments examined the effects of the timing and severity of drought, and increased temperature, on grain development of Hereward winter wheat. Environmental effects on grain specific weight, protein content, Hagberg Falling Number, SDS-sedimentation volume, and sulphur content were also studied. Drought and increased temperature applied before the end of grain filling shortened the grain filling period and reduced grain yield, mean grain weight and specific weight. Grain filling was most severely affected by drought between days 1-14 after anthesis. Protein content was increased by stresses before the end of grain growth, because nitrogen harvest index was less severely affected than was dry matter harvest index. Hagberg Falling Number was increased to the greatest extent by stresses applied 15-28 days after anthesis. Treatment effects on grain sulphur content were similar to those on protein content, such that N:S ratio was not significantly affected by drought nor temperature stresses. The effects of restricted water on grain yield and quality were linearly related to soil moisture between 44 and about 73% field capacity (FC) from days 15-28. Drought stress (but not temperature stress) before the end of grain filling decreased SDS-sedimentation volume relative to drought applied later. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of zinc as a structural metal has been militated against by two of its properties, namely, its low tensile strength and its susceptibility to grain growth. The importance of these factors can be appreciated when it is realized that the tensile strength of coarsely crystalline cast zinc is 4,000 pounds per square inch, while finely crystalline cast zinc has a tensile strength of 12,000 pounds per square inch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tin alloys of tellurium are extremely hard and have very great tensile strength. It was thought that the reduction of the rate of grain growth of tin with the addition of tellurium accompanied this hardening and strengthening and such way found to be true.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature-induced grain coarsening. Despite this large-scale trend, a considerable grain size scatter occurs on the outcrop-scale indicating local influence of second-order effects such as thermal perturbations, fluid flow and second-phase particles. Second-phase particles, whose sizes range from nano- to the micron-scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron-scale second-phase particles, or to samples containing a large number of nano-scale particles. The obtained data set suggests that the second phases induce a temperature-controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D 1⁄4 C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second-phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian-type distributions of the pure samples. In contrast, fluid-enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable d18O and d13C isotope ratios in fluid-affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid-induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1.To summarize, considerable grain size variations of up to one order of magnitude can locally result from second-order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sintered bars of YBa2Cu3O7-x obtained by slip-casting are investigated for drying and sintering behaviour. High J(cm) values (approximate to 10(6) A/cm(2) at 77K) are obtained, although J(ct) values are low (approximate to 10(2) A/cm(2) at 77K). Microstructural characterisation is undertaken on selected samples which demonstrate significant differences in physical density and critical current density.