165 resultados para GOUT
Resumo:
Gout is caused by the deposition of monosodium urate crystals (MSU) in tissue and provokes a local inflammatory reaction. It is the most common form of inflammatory arthritis in the elderly. The formation of MSU crystals is facilitated by hyperuricemia. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into uric acid metabolism in the kidneys as well as possible links between hyperuricemia and hypertension. MSU crystals provoke inflammation by activating leukocytes to produce inflammatory cytokines and other inflammatory mediators. The uptake of MSU crystals by monocytes involves interactions with Toll-like receptors (TLR-2 and TLR-4) and CD14, components of the innate immune system. Intracellularly, MSU crystals activate inflammasomes to activate pro-IL-1 (interleukin 1) processing to yield mature IL-1beta. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances provide new therapeutic targets to treat hyperuricemia and gout.
Resumo:
OBJECTIVE: To determine the usefulness of computed tomography (CT), magnetic resonance imaging (MRI), and Doppler ultrasonography (US) in providing specific images of gouty tophi. METHODS: Four male patients with chronic gout with tophi affecting the knee joints (three cases) or the olecranon processes of the elbows (one case) were assessed. Crystallographic analyses of the synovial fluid or tissue aspirates of the areas of interest were made with polarising light microscopy, alizarin red staining, and x ray diffraction. CT was performed with a GE scanner, MR imaging was obtained with a 1.5 T Magneton (Siemens), and ultrasonography with colour Doppler was carried out by standard technique. RESULTS: Crystallographic analyses showed monosodium urate (MSU) crystals in the specimens of the four patients; hydroxyapatite and calcium pyrophosphate dihydrate (CPPD) crystals were not found. A diffuse soft tissue thickening was seen on plain radiographs but no calcifications or ossifications of the tophi. CT disclosed lesions containing round and oval opacities, with a mean density of about 160 Hounsfield units (HU). With MRI, lesions were of low to intermediate signal intensity on T(1) and T(2) weighting. After contrast injection in two cases, enhancement of the tophus was seen in one. Colour Doppler US showed the tophi to be hypoechogenic with peripheral increase of the blood flow in three cases. CONCLUSION: The MR and colour Doppler US images showed the tophi as masses surrounded by a hypervascular area, which cannot be considered as specific for gout. But on CT images, masses of about 160 HU density were clearly seen, which correspond to MSU crystal deposits.
Resumo:
IL-1beta is a cytokine with major roles in inflammation and innate immune responses. IL-1beta is produced as an inactive proform that must be cleaved within the cell to generate biologically active IL-1beta. The enzyme caspase-1 catalyzes the reaction. Recent work showed that caspase-1 must be activated by a complex known as the inflammasome. The inflammasome comprises NALP, which is an intracellular receptor involved in innate immunity, and an ASC adapter that ensures caspase-1 recruitment to the receptor. The most extensively described inflammasome to date is formed by the NALP3 receptor within monocytes. Mutations involving the NALP3 gene cause hereditary periodic fever syndromes in humans. Increased inflammasome activity responsible for uncontrolled IL-1beta production occurs in these syndromes. Inhibition of the IL-1beta pathway by IL-1 receptor antagonist (anakinra) is a highly effective treatment for inherited periodic fever syndromes. A major role for inflammasome activity in the development of gout attacks was established recently. Urate monosodium crystals are specifically detected via the NALP3 inflammasome, which results in marked IL-1beta overproduction and initiation of an inflammatory response. This finding opens up new possibilities for the management of gouty attacks.
Resumo:
Background/Purpose: Gout is a common and excruciatingly painful inflammatory arthritis caused by hyperuricemia. In addition to various lifestyle risk factors, a substantial genetic predisposition to gout has long been recognized. The Global Urate Genetics Consortium (GUGC) has aimed to comprehensively investigate the genetics of serum uric acid and gout using data from _ 140,000 individuals of European-ancestry, 8,340 individuals of Indian ancestry, 5,820 African-Americans, and 15,286 Japanese. Methods: We performed discovery GWAS meta-analyses of serum urate levels (n_110,347 individuals) followed by replication analyses (n_32,813 different individuals). Our gout analysis involved 3,151 cases and 68,350 controls, including 1,036 incident gout cases that met the American College of Rheumatology Criteria. We also examined the association of gout with fractional excretion of uric acid (n_6,799). A weighted genetic urate score was constructed based on the number of risk alleles across urate-associated loci, and their association with the risk of gout was evaluated. Furthermore, we examined implicated transcript expression in cis (expression quantitative trait loci databases) for potential insights into the gene underlying the association signal. Finally, in order to further identify urate-associated genomic regions, we performed functional network analyses that incorporated prior knowledge on molecular interactions in which the gene products of implicated genes operate. Results: We identified and replicated 28 genome-wide significant loci in association with serum urate (P 5_10_8), including all previously-reported loci as well as 18 novel genetic loci. Unlike the majority of previouslyidentified loci, none of the novel loci appeared to be obvious candidates for urate transport. Rather, they were mapped to genes that encode for purine production, transcription, or growth factors with broad downstream responses. Besides SLC2A9 and ABCG2, no additional regions contained SNPs that differed significantly (P _ 5_10_8) between sexes. Urateincreasing alleles were associated with an increased risk of gout for all loci. The urate genetic risk score (ranging from 10 to 45) was significantly associated with an increased odds of prevalent gout (OR per unit increase, 1.11; 95% CI, 1.09-1.14) and incident gout (OR, 1.10; 95% CI, 1.08-1.13). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. Detailed characterization of the loci revealed associations with transcript expression and the fractional excretion of urate. Network analyses implicated the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. Conclusion: The novel genetic candidates identified in this urate/gout consortium study, the largest to date, highlight the importance of metabolic control of urate production and urate excretion. The modulation by signaling processes that influence metabolic pathways such as glycolysis and the pentose phosphate pathway appear to be central mechanisms underpinned by the novel GWAS candidates. These findings may have implications for further research into urate-lowering drugs to treat and prevent gout.
Resumo:
Gout is the most common inflammatory arthritis and one in which pathogenesis and risk factors are best understood. One of the treatment objectives in current guidelines is 'cure'. However, audits show that only a minority of patients with gout receive adequate advice and treatment. Suboptimal care and outcomes reflect inappropriately negative perceptions of the disease, both in patients and providers. Historically, gout has been portrayed as a benign and even comical condition that is self-inflicted through overeating and alcohol excess. Doctors often focus on managing acute attacks rather than viewing gout as a chronic progressive crystal deposition disease. Urate-lowering treatment is underprescribed and often underdosed. Appropriate education of patients and doctors, catalysed by recent introduction of new urate-lowering treatments after many years with no drug development in the field, may help to overcome these barriers and improve management of this easily diagnosed and curable form of potentially severe arthritis.
Resumo:
Référence bibliographique : Weigert, 154
Resumo:
OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1β (IL-1β) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1β-inducing factor, MSU crystals alone are insufficient to induce IL-1β secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1β secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1β secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1β secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1β secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.
Resumo:
Gout is an inflammatory arthritis caused by monosodium urate (MSU) crystal deposits in and around the joint. The formation of urinary calculi can also occur in gout, but are less common than arthritis. Gout usually presents with recurrent episodes of joint inflammation, which over time lead to tophus formation and joint destruction. In the last decade, significant advances have been made regarding not only the epidemiology and genetics of gout and hyperuricemia but also the mechanisms of inflammation and treatment of gout. In addition, knowledge concerning the key role of interleukin 1 (IL-1) has provided new therapeutic perspectives. However, the current management of gout is often suboptimal, with many Patienten either not receiving adequate treatment or being unable to tolerate existing treatments. New therapeutic agents provide interesting new options for Patienten with difficult-to-treat gouty arthritis.The English full-text version of this is available at SpringerLink (under "Supplemental").
Resumo:
Epidemiological and experimental studies have shown that hyperuricaemia and gout are intricately linked with hypertension, metabolic syndrome, chronic kidney disease and cardiovascular disease. A number of studies suggest that hyperuricaemia and gout are independent risk factors for the development of these conditions and that these conditions account, in part, for the increased mortality rate of patients with gout. In this Review, we first discuss the links between hyperuricaemia, gout and these comorbidities, and present the mechanisms by which uric acid production and gout might favour the development of cardiovascular and renal diseases. We then emphasize the potential benefit of urate-lowering therapies on cardiovascular and renal outcomes in patients with hyperuricaemia. The mechanisms that link elevated serum uric acid levels and gout with these comorbidities seem to be multifactorial, implicating low-grade systemic inflammation and xanthine oxidase (XO) activity, as well as the deleterious effects of hyperuricaemia itself. Patients with asymptomatic hyperuricaemia should be treated by nonpharmacological means to lower their SUA levels. In patients with gout, long-term pharmacological inhibition of XO is a treatment strategy that might also reduce cardiovascular and renal comorbidities, because of its dual effect of lowering SUA levels as well as reducing free-radical production during uric acid formation.
Resumo:
PURPOSE OF REVIEW: To give an overview of current evidence for interleukin (IL)-1 blockade in the management of gout. RECENT FINDINGS: Three IL-1 blockers are currently available for clinical use: anakinra, rilonacept and canakinumab. Recent studies have focused on drugs with a long half-life: rilonacept and canakinumab. For treatment of acute gouty arthritis, three randomized controlled trials (RCTs) showed efficacy of canakinumab with some safety concerns and one RCT failed to show efficacy of rilonacept. For prevention of gout flare when starting uric acid lowering therapy (ULT), four RCTs showed efficacy of rilonacept and one RCT showed efficacy of canakinumab. SUMMARY: There is sufficient evidence supporting the use of IL-1 blockers for treatment of acute gouty arthritis or for prevention of gout flares when starting ULT in selected patients, with contraindications or intolerance to conventional therapy. More data are needed to assess safety and to specify their use in routine practice.
Resumo:
Background: Gout patients initiating urate lowering therapy have an increased risk of flares. Inflammation in gouty arthritis is induced by IL-1b. Canakinumab targets and inhibits IL-1b effectively in clinical studies. This study compared different doses of canakinumab vs colchicine in preventing flares in gout patients initiating allopurinol therapy.Methods: In this 24 week double blind study, gout patients (20-79 years) initiating allopurinol were randomized (1:1:1:1:1:1:2) to canakinumab s.c. single doses of 25, 50, 100, 200, 300 mg, or 150 mg divided in doses every 4 weeks (50+50+25+25 mg [q4wk]) or colchicine 0.5 mg p.o. daily for 16 weeks. Primary outcome was to determine the canakinumab dose giving comparable efficacy to colchicine with respect to the number of gout flares occurring during first 16 weeks. Secondary outcomes included number of patients with gout flares and C-reactive protein (CRP) levels during the first 16 weeks.Results: 432 patients were randomized and 391 (91%) completed the study. All canakinumab doses were better than colchicine in preventing flares and therefore, a canakinumab dose comparable to colchicine could not be determined. Based on a negative binomial model, all canakinumab groups, except 25 mg, reduced the flare rate ratio per patient significantly compared to colchicine group (rate ratio estimates 25 mg 0.60, 50 mg 0.34, 100 mg 0.28, 200 mg 0.37, 300 mg 0.29, q4wk 0.38; p<=0.05). The percentage of patients with flares was lower for all canakinumab groups (25 mg 27.3%, 50 mg 16.7%, 100 mg 14.8%, 200 mg 18.5%, 300 mg 15.1%, q4wk 16.7%) compared to colchicine group (44.4%). All patients taking canakinumab were significantly less likely to experience at least one gout flare than patients taking colchicine (odds ratio range [0.22 - 0.47]; p<=0.05 for all). The median baseline CRP levels were 2.86 mg/L for 25 mg, 3.42 mg/L for 50 mg, 1.76 mg/L for 100 mg, 3.66 mg/L for 200 mg, 3.21 mg/L for 300 mg, 3.23 mg/L for q4wk canakinumab groups and 2.69 mg/L for colchicine group. In all canakinumab groups with median CRP levels above the normal range at baseline, median levels declined within 15 days of treatment and were maintained at normal levels (ULN=3 mg/L) throughout the 16 week period. Adverse events (AEs) occurred in 52.7% (25 mg), 55.6% (50 mg), 51.9% (100 mg), 51.9% (200 mg), 54.7% (300 mg), and 58.5% (q4wk) of patients on canakinumab vs 53.7% of patients on colchicine. Serious AEs (SAE) were reported in 2 (3.6%; 25 mg), 2 (3.7%, 50 mg), 3 (5.6%, 100 mg), 3 (5.6%, 200 mg), 3 (5.7%, 300 mg) and 1 (1.9%, q4wk) patients on canakinumab and in 5 (4.6%) patients on colchicine. One fatal SAE (myocardial infarction, not related to study drug) occurred in colchicine group.Conclusion: In this large randomized, double-blind active controlled study of flare prevention in gout patients initiating allopurinol therapy, treatment with canakinumab led to a statistically significant reduction in flares compared with colchicine (standard of care), and was well tolerated.
Resumo:
Major progress has been made in the past decade in understanding the pathogenesis and treatment of gout. These advances include identification of the genetic and environmental risk factors for gout, recognition that gout is an important risk factor for cardiovascular disease, elucidation of the pathways regulating the acute gout attack and the development of novel therapeutic agents to treat both the acute and chronic phases of the disease. This review summarises these advances and highlights the research agenda for the next decade.
Resumo:
Background: Gout patients initiating urate lowering therapy have an increased risk of flares. Inflammation in gouty arthritis is induced by IL-1b. Canakinumab targets and inhibits IL-1b effectively in clinical studies. This study compared different doses of canakinumab vs colchicine in preventing flares in gout patients initiating allopurinol therapy.Methods: In this 24 week double blind study, gout patients (20-79 years) initiating allopurinol were randomized (1:1:1:1:1:1:2) to canakinumab s.c. single doses of 25, 50, 100, 200, 300 mg, or 150 mg divided in doses every 4 weeks (50+50+25+25 mg [q4wk]) or colchicine 0.5 mg p.o. daily for 16 weeks. Primary outcome was to determine the canakinumab dose giving comparable efficacy to colchicine with respect to the number of gout flares occurring during first 16 weeks. Secondary outcomes included number of patients with gout flares and C-reactive protein (CRP) levels during the first 16 weeks.Results: 432 patients were randomized and 391 (91%) completed the study. All canakinumab doses were better than colchicine in preventing flares and therefore, a canakinumab dose comparable to colchicine could not be determined. Based on a negative binomial model, all canakinumab groups, except 25 mg, reduced the flare rate ratio per patient significantly compared to colchicine group (rate ratio estimates 25 mg 0.60, 50 mg 0.34, 100 mg 0.28, 200 mg 0.37, 300 mg 0.29, q4wk 0.38; p<=0.05). The percentage of patients with flares was lower for all canakinumab groups (25 mg 27.3%, 50 mg 16.7%, 100 mg 14.8%, 200 mg 18.5%, 300 mg 15.1%, q4wk 16.7%) compared to colchicine group (44.4%). All patients taking canakinumab were significantly less likely to experience at least one gout flare than patients taking colchicine (odds ratio range [0.22 - 0.47]; p<=0.05 for all). The median baseline CRP levels were 2.86 mg/L for 25 mg, 3.42 mg/L for 50 mg, 1.76 mg/L for 100 mg, 3.66 mg/L for 200 mg, 3.21 mg/L for 300 mg, 3.23 mg/L for q4wk canakinumab groups and 2.69 mg/L for colchicine group. In all canakinumab groups with median CRP levels above the normal range at baseline, median levels declined within 15 days of treatment and were maintained at normal levels (ULN=3 mg/L) throughout the 16 week period. Adverse events (AEs) occurred in 52.7% (25 mg), 55.6% (50 mg), 51.9% (100 mg), 51.9% (200 mg), 54.7% (300 mg), and 58.5% (q4wk) of patients on canakinumab vs 53.7% of patients on colchicine. Serious AEs (SAE) were reported in 2 (3.6%; 25 mg), 2 (3.7%, 50 mg), 3 (5.6%, 100 mg), 3 (5.6%, 200 mg), 3 (5.7%, 300 mg) and 1 (1.9%, q4wk) patients on canakinumab and in 5 (4.6%) patients on colchicine. One fatal SAE (myocardial infarction, not related to study drug) occurred in colchicine group.Conclusion: In this large randomized, double-blind active controlled study of flare prevention in gout patients initiating allopurinol therapy, treatment with canakinumab led to a statistically significant reduction in flares compared with colchicine (standard of care), and was well tolerated.