251 resultados para GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS
Resumo:
We demonstrate that the cccB gene, identified in the Bacillus subtilis genome sequence project, is the structural gene for a 10-kDa membrane-bound cytochrome c(551) lipoprotein described for the first time in B. subtilis. Apparently, CccB corresponds to cytochrome c(551) of the thermophilic bacterium Bacillus PS3. The heme domain of B. subtilis cytochrome c(551) is very similar to that of cytochrome c(550), a protein encoded by the cccA gene and anchored to the membrane by a single transmembrane polypeptide segment. Thus, B. subtilis contains two small, very similar, c-type cytochromes with different types of membrane anchors. The cccB gene is cotranscribed with the yvjA gene, and transcription is repressed by glucose. Mutants deleted for cccB or yvjA-cccB show no apparent growth, sporulation, or germination defect. YvjA is not required for the synthesis of cytochrome c(551), and its function remains unknown.
Resumo:
In response to stress, the heart undergoes a pathological remodeling process associated with hypertrophy and the reexpression of a fetal gene program that ultimately causes cardiac dysfunction and heart failure. In this study, we show that A-kinase-anchoring protein (AKAP)-Lbc and the inhibitor of NF-κB kinase subunit β (IKKβ) form a transduction complex in cardiomyocytes that controls the production of proinflammatory cytokines mediating cardiomyocyte hypertrophy. In particular, we can show that activation of IKKβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukin-6 (IL-6), which in turn enhances fetal gene expression and cardiomyocyte growth. These findings provide a new mechanistic hypothesis explaining how hypertrophic signals are coordinated and conveyed to interleukin-mediated transcriptional reprogramming events in cardiomyocytes.
Resumo:
Protamine sulphate/DNA complexes have been shown to protect DNA from DNase digestion in a lipid system for gene transfer. A DNA-based vaccine complexed to protamine sulphate was used to induce an immune response against Schistosoma mansoni anchored-glycosylphosphatidylinositol tegumental antigen in BALB/c mice. The protection elicited ranged from 33 to 44%. The spectrum of the elicited immune response induced by the vaccine formulation without protamine was characterized by a high level of IgG (IgG1> IgG2a). Protamine sulphate added to the DNA vaccine formulation retained the green fluorescent protein encoding-plasmid longer in muscle and spleen. The experiments in vivo showed that under protamine sulphate effect, the scope of protection remained unchanged, but a modulation in antibody production (IgG1= IgG2a) was observed.
Resumo:
Anti-glycosylphosphatidylinositol (GPI) antibodies (Abs) may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP)3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19) in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown) in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax.
Resumo:
The mitogen-activated protein kinases (MAPKs) pathways are highly organized signaling systems that transduce extracellular signals into a variety of intracellular responses. In this context, it is currently poorly understood how kinases constituting these signaling cascades are assembled and activated in response to receptor stimulation to generate specific cellular responses. Here, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critically involved in the activation of the p38α MAPK downstream of α(1b)-adrenergic receptors (α(1b)-ARs). Our results indicate that AKAP-Lbc can assemble a novel transduction complex containing the RhoA effector PKNα, MLTK, MKK3, and p38α, which integrates signals from α(1b)-ARs to promote RhoA-dependent activation of p38α. In particular, silencing of AKAP-Lbc expression or disrupting the formation of the AKAP-Lbc·p38α signaling complex specifically reduces α(1)-AR-mediated p38α activation without affecting receptor-mediated activation of other MAPK pathways. These findings provide a novel mechanistic hypothesis explaining how assembly of macromolecular complexes can specify MAPK signaling downstream of α(1)-ARs.
Resumo:
The Iowa Department of Transportation (IaDOT) was interested in investigating the use of epoxy adhesive anchorages for the attachment of posts used in the BR27C combination bridge rail system. Alternative anchorage concepts were developed using a modified version of the ACI 318-11 procedures for embedded anchor design. Four design concepts were developed for review by IaDOT, including: (1) a four-bolt square anchorage, (2) a four-bolt spread anchorage, (3) a twobolt centered anchorage, and (4) a two-bolt offset anchorage. IaDOT representatives selected the four-bolt spread anchorage and the two-bolt offset anchorage as the preferred designs for evaluation. In addition to these two proposed configurations, IaDOT also requested that the researchers evaluate a third option that had been previously installed on the US-20 bridge near Hardin, IA. The proposed alternative anchorages and the original cast-in-place anchorage for the BR27C combination bridge rail were evaluated through dynamic component testing. The test of the original cast-in-place anchorage was used a baseline for comparison with the alternative designs. Test no. IBP-1 of the original cast-in-place anchorage developed a peak load of 22.9 kips (101.9 kN) at a deflection of 1.5 in. (38 mm). All three of the tested alternative anchorages provided greater load capacity than the original cast-in-place design and were deemed acceptable surrogates. Of the three alternative designs, the two-bolt offset design was deemed the best option.
Resumo:
Introduction: Absorbable anchors are frequently used in shoulder surgery. Mechanisms of absorption induce a local inflammatory reaction. It is not clear if this process may disturb healing of the capsule and ligaments. The purpose of the study was to compare the rate of recurrent dislocation following open shoulder stabilization when using absorbable or non-absorbable suture anchors. Methods: Between 1999 and 2003, 83 open Bankart repairs were performed by the same surgeon. All patients had recurrent traumatic anterior shoulder instability. All had preoperative arthro-MRI or arthro-CT which did not reveal any significant bony Bankart lesion or rotatorcuff tear. Thirty-four patients were treated with absorbable anchors (Panalok®) and sutures (Panacryl®) and 49 with non-absorbable anchors (Mitek GII®) and sutures (Ethibond®). The same surgical technique and rehabilitation protocol were used. The incidence of sports ability and recurrent instability were recorded. We defined instability as true dislocation. Results: Five patients on 34 were lost to follow-up in the absorbable group and 7 on 49 in the non-absorbable group. The mean age of absorbable group was 25 years (range, 17-39 years). At a mean follow-up of 66 months (range, 54-76 months), 86% could resume sports activity. Five patients on 29 (17%) reported recurrent instability and two did need revision surgery. The mean age in non-absorbable group was 28 year (range, 18-47 years). At a mean follow-up of 78 months (range, 49-82 months), 93% could resume sports activity. Three patients on 42 (7%) reported recurrent instability and one did need revision surgery. Conclusion: This clinical study showed a clear tendency to a higher recurrence rate of dislocation when using absorbable suture anchors (17% in absorbable vs 7% in non-absorbable group). It is known that Panacryl® may be responsible for a major local inflammatory response. However, it is still unclear if this could be the failure etiology. Consequently, we prefer to use systematically non-absorbable sutureanchors for shoulder stabilization.
Resumo:
The kinetics of binding of a glycolipid-anchored protein (the promastigote surface protease, PSP) to planar lecithin bilayers is studied by an integrated optics technique, in which the bilayer membrane is supported on an optical wave guide and the phase velocities of guided light modes in the wave guide are measured. From these velocities, the optical parameters of the membrane and PSP layers deposited on the waveguide are determined, yielding in particular the mass of PSP bound to the membrane, which is followed in real time. From a comparison of the binding rates of PSP and PSP from which the lipid moiety has been removed, it is shown that the lipid moiety plays a key role in anchoring the protein to the membrane. Specific and nonspecific binding of antibodies to membrane-anchored PSP is also investigated. As little as a fifth of a monolayer of PSP is sufficient to suppress the appreciable nonspecific binding of antibodies to the membrane.
Resumo:
Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.
Resumo:
Adrenoceptors (ARs), G-protein coupled receptors (GPCRs) at the plasma membrane, respond to endogenous catecholamines noradrenaline and adrenaline. These receptors mediate several important physiological functions being especially important in the cardiovascular system and in the regulation of smooth muscle contraction. Impairments in the function of these receptors can thus lead to severe diseases and disorders such as to cardiovascular diseases and benign prostatic hyperplasia. The Eastern green mamba (Dendroaspis angusticeps) venom has been shown to contain toxins that can antagonize the functions of GPCRs. The most well-known are muscarinic toxins (MTs) targeting muscarinic acetylcholine receptors (mAChRs) with high affinity and selectivity. However, some reports have indicated that these toxins might also act on the α1- and α2-ARs which can be divided into various subtypes; the α1-ARs to α1A-, α1B- and α1D-ARs and α2-ARs to α2A-, α2B- and α2C-ARs. In this thesis, the interaction of four common MTs (MT1, MT3, MT7 and MTα) with the adrenoceptors was characterized. It was also evaluated whether these toxins could be anchored to the plasma membrane via glycosylphosphatidylinositol (GPI) tail. Results of this thesis reveal that muscarinic toxins are targeting several α-adrenoceptor subtypes in addition to their previously identified target receptors, mAChRs. MTα was found to interact with high affinity and selectivity with the α2B-AR whereas MT7 confirmed its selectivity for the M1 mAChR. Unlike MTα and MT7, MT1 and MT3 have a broad range of target receptors among the α-ARs. All the MTs characterized were found to behave as non-competitive antagonists of receptor action. The interaction between MTα and the α2B-AR was studied more closely and it was observed that the second extracellular loop of the receptor functions as a structural entity enabling toxin binding. The binding of MTα to the α2B-AR appears to be rather complex and probably involves dimerized receptor. Anchoring MTs to the plasma membrane did not interfere with their pharmacological profile; all the GPI-anchored toxins created retained their ability to block their target receptors. This thesis shows that muscarinic toxins are able to target several subtypes of α-ARs and mAChRs. These toxins offer thus a possibility to create new subtype specific ligands for the α-AR subtypes. Membrane anchored MTs on the other hand could be used to block α-AR and mAChR actions in disease conditions such as in hypertension and in gastrointestinal and urinary bladder disorders in a cell-specific manner and to study the physiological functions of ARs and mAChRs in vivo in model organisms.
Resumo:
Objective: To examine the interpretation of the verbal anchors used in the Borg rating of perceived exertion (RPE) scales in different clinical groups and a healthy control group. Design: Prospective experimental study. Setting: Rehabilitation center. Participants: Nineteen subjects with brain injury, 16 with chronic low back pain (CLBP), and 20 healthy controls. Interventions: Not applicable. Main Outcome Measures: Subjects used a visual analog scale (VAS) to rate their interpretation of the verbal anchors from the Borg RPE 6-20 and the newer 10-point category ratio scale. Results: All groups placed the verbal anchors in the order that they occur on the scales. There were significant within-group differences (P > .05) between VAS scores for 4 verbal anchors in the control group, 8 in the CLBP group, and 2 in the brain injury group. There was no significant difference in rating of each verbal anchor between the groups (P > .05). Conclusions: All subjects rated the verbal anchors in the order they occur on the scales, but there was less agreement in rating of each verbal anchor among subjects in the brain injury group. Clinicians should consider the possibility of small discrepancies in the meaning of the verbal anchors to subjects, particularly those recovering from brain injury, when they evaluate exercise perceptions.
Resumo:
Includes bibliography
Resumo:
Sheet pile walls are one of the oldest earth retention systems utilized in civil engineering projects. They are used for various purposes; such as excavation support system, cofferdams, cut-off walls under dams, slope stabilization, waterfront structures, and flood walls. Sheet pile walls are one of the most common types of quay walls used in port construction. The worldwide increases in utilization of large ships for transportation have created an urgent need of deepening the seabed within port areas and consequently the rehabilitation of its wharfs. Several methods can be used to increase the load-carrying capacity of sheet-piling walls. The use of additional anchored tie rods grouted into the backfill soil and arranged along the exposed wall height is one of the most practical and appropriate solutions adopted for stabilization and rehabilitation of the existing quay wall. The Ravenna Port Authority initiated a project to deepen the harbor bottom at selected wharves. An extensive parametric study through the finite element program, PLAXIS 2D, version 2012 was carried out to investigate the enhancement of using submerged grouted anchors technique on the load response of sheet-piling quay wall. The influence of grout-ties area, length of grouted body, anchor inclination and anchor location were considered and evaluated due to the effect of different system parameters. Also a comparative study was conducted by Plaxis 2D and 3D program to investigate the behavior of these sheet pile quay walls in terms of horizontal displacements induced along the sheet pile wall and ground surface settlements as well as the anchor force and calculated factor of safety. Finally, a comprehensive study was carried out by using different constitutive models to simulate the mechanical behavior of the soil to investigate the effect of these two models (Mohr-Coulomb and Hardening Soil) on the behavior of these sheet pile quay walls.
Resumo:
myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated.