1000 resultados para GLUON PLASMA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compute a certain class of corrections to (specific) screening lengths in strongly coupled non-abelian plasmas using the AdS/CFT correspondence. In this holographic framework, these corrections arise from various higher curvature interactions modifying the leading Einstein gravity action. The changes in the screening lengths are perturbative in inverse powers of the `t Hooft coupling or of the number of colors, as can be made precise in the context where the dual gauge theory is superconformal. We also compare the results of these holographic calculations to lattice results for the analogous screening lengths in QCD. In particular, we apply these results within the program of making quantitative comparisons between the strongly coupled quark-gluon plasma and holographic descriptions of conformal field theory. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on a relativistic hydrodynamic model describing the evolution of the chemically equilibrating quark-gluon plasma system with finite baryon density in a 3+1-dimensional spacetime, we compute photons from the quark phase, hadronic phase and initial non-thermal contributions. It is found that due to the effects of the initial quark chemical potential, chemical equilibration and rapid expansion of the system, the photon yield of the quark-gluon plasma is strongly suppressed, and photons from hadronic matter and initial non-thermal contributions almost reproduce experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study hard photon production from a chemically non-equilibrated quark-gluon plasma with finite baryon density on the basis of Juttner distribution of partons of the system. We find that the photon production is ruled by early times, main contributions are given by rapidities y <= 6, and photon yield is a strongly increasing function of the initial quark chemical potential. In addition, we note that contribution from bremsstrahlung and Compton process qg -> q gamma dominates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Charged-particle spectra associated with direct photon (gamma(dir)) and pi(0) are measured in p + p and Au + Au collisions at center-of-mass energy root(S)(NN) = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A shower-shape analysis is used to partially discriminate between gamma(dir) and pi(0). Assuming no associated charged particles in the gamma(dir) direction ( near side) and small contribution from fragmentation photons (gamma(frag)), the associated charged-particle yields opposite to gamma(dir) (away side) are extracted. In central Au + Au collisions, the charged-particle yields at midrapidity (vertical bar eta vertical bar < 1) and high transverse momentum (3 < (assoc)(PT) < 16 GeV/c) associated with gamma(dir) and pi(0) (vertical bar eta vertical bar < 0.9, 8 < (trig)(PT) < 16 GeV/c) are suppressed by a factor of 3-5 compared with p + p collisions. The observed suppression of the associated charged particles is similar for gamma(dir) and pi(0) and independent of the gamma(dir) energy within uncertainties. These measurements indicate that, in the kinematic range covered and within our current experimental uncertainties, the parton energy loss shows no sensitivity to the parton initial energy, path length, or color charge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K-S(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K-S(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N-part. This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au + Au collisions below the nominal injection energy at the BNL Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance solenoidal tracker at RHIC (STAR) detector at root s(NN) = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density dN/dy in rapidity y, average transverse momentum < p(T)>, particle ratios, elliptic flow, and Hanbury-Brown-Twiss (HBT) radii are consistent with the corresponding results at similar root s(NN) from fixed-target experiments. Directed flow measurements are presented for both midrapidity and forward-rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, < p(T)>, and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for root s(NN) = 200 GeV, are suitable for the proposed QCD critical-point search and exploration of the QCD phase diagram at RHIC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons-comprising an antiproton, an antineutron, and an antilambda hyperon-produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons (3/Lambda(H) over bar) and 157 +/- 30 hypertritons (H-3(Lambda)). The measured yields of H-3(Lambda) (3/Lambda(H) over bar) and He-3 ((3)(He) over bar) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(NN)-N-s = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(NN)-N-s = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y-beam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We construct and compare in this work a variety of simple models for strange stars, namely, hypothetical self-bound objects made of a cold stable version of the quark-gluon plasma. Exact, quasi-exact and numerical models are examined to find the most economical description for these objects. A simple and successful parametrization of them is given in terms of the central density, and the differences among the models are explicitly shown and discussed. In particular, we present a model starting with a Gaussian ansatz for the density profile that provides a very accurate and almost complete analytical integration of the problem, modulo a small difference for one of the metric potentials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ""radiation"". Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. (C) 2009 Elseiver. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the production of D (sJ) (2317) mesons in relativistic heavy ion collisions using the quark coalescence model. The predicted D (sJ) (2317) abundance depends sensitively on the quark structure of the D (sJ) (2317) meson. We have also evaluated the absorption cross sections of the D (sJ) (2317) meson by pi, rho, kaon and K* in a phenomenological hadronic model. We find that the final yield of D (sJ) (2317) mesons remains sensitive to its initial number produced from the quark-gluon plasma, providing thus the possibility of studying the quark structure of the D (sJ) (2317) meson and its production mechanism in relativistic heavy ion collisions.