129 resultados para GLUCONEOGENESIS
Resumo:
Gluconeogenic activity and kinetic parameters of glucose metabolism were estimated during the different phases of prolonged food deprivation in quails. Gluconeogenic activity, estimated from the rate of increase of incorporation of (HCO3-)-C-14 into circulating glucose, was significantly higher in fasted quails than in fed birds, whatever the period of food deprivation. However, gluconeogenic activity during phase II, although higher than in the fed state, was significantly lower than in quails fasted for 2 days (phase I) or in those on the final (phase III) period of starvation. Gluconeogenic activity did not differ significantly in birds from phases I and III. Rates of glucose replacement, estimated with [6-H-3]-glucose, were very high (20.5 mg . kg(-1). min(-1)) in fed quails and were markedly reduced (to about 42% of fed values) by fasting, no difference being observed between quails fasted for 2 and 5 days. Because of the poor condition of the birds, glucose replacement rates could not be measured during phase III. The present data are the first to provide direct evidence for the changes in gluconeogenesis which occur during prolonged food deprivation.
Resumo:
Previous studies showed that livers from carnivorous birds have a higher gluconeogenic capacity and higher levels of gluconeogenic enzymes than livers from granivorous birds. In this work we compare the effects of fasting and adrenalectomy on gluconeogenesis. Fasting in the chicken elicited increased rates of incorporation of 14C from alanine into blood glucose, increased gluconeogenesis in liver slices, and increased activities of four gluconeogenic enzymes: glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, alanine aminotransferase, and aspartate aminotransferase. These responses in the chicken resemble those observed in fasted rodents. In marked contrast, fasting in black vultures induced decreased rates of incorporation of alanine label into circulating glucose, decreased gluconeogenesis in liver slices, and no change in any of the four enzymes studied. This unusual response to fasting in the carnivorous bird is probably related to the high-protein-low-carbohydrate content of the diet. Fasted adrenalectomized birds (granivorous and carnivorous) had reduced rates of in vivo glucose synthesis, decreased liver gluconeogenesis, and lower activity of glucose-6-phosphatase and aspartate aminotransferase, without change in phosphoenolpyruvate carboxykinase and alanine aminotransferase activities.
Resumo:
We investigated the effect of a meal feeding schedule (MFS) on food intake, hepatic glycogen synthesis, hepatic capacity to produce glucose and glycemia in rats. The MFS comprised free access to food for a 2-hour period daily at a fixed mealtime (8.00-10.00 a.m.) for 13 days. The control group was composed of rats with free access to food from day 1 to 12, which were then starved for 22 h, refed with a single meal at 8.00-10.00 a.m. and starved again for another 22 h. All experiments were performed at the meal time (i.e. 8.00 a.m.). The MFS group exhibited increased food intake and higher glycogen synthase activity. Since gluconeogenesis from L-glutamine or L-alanine was not affected by MFS, we conclude that the increased food intake and higher glycogen synthase activity contributed to the better glucose maintenance showed by MFS rats at the fixed meal time. Copyright © 2001 National Science Council, ROC and S. Karger AG, Basel.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fructose consumption causes insulin resistance and favors hepatic gluconeogenesis through mechanisms that are not completely understood. Recent studies demonstrated that the activation of hypothalamic 5'-AMP-activated protein kinase (AMPK) controls dynamic fluctuations in hepatic glucose production. Thus, the present study was designed to investigate whether hypothalamic AMPK activation by fructose would mediate increased gluconeogenesis. Both ip and intracerebroventricular (icv) fructose treatment stimulated hypothalamic AMPK and acetyl-CoA carboxylase phosphorylation, in parallel with increased hepatic phosphoenolpyruvate carboxy kinase (PEPCK) and gluconeogenesis. An increase in AMPK phosphorylation by icv fructose was observed in the lateral hypothalamus as well as in the paraventricular nucleus and the arcuate nucleus. These effects were mimicked by icv 5-amino-imidazole-4-carboxamide-1-beta-D-ribofuranoside treatment. Hypothalamic AMPK inhibition with icv injection of compound C or with injection of a small interfering RNA targeted to AMPK alpha 2 in the mediobasal hypothalamus (MBH) suppressed the hepatic effects of ip fructose. We also found that fructose increased corticosterone levels through a mechanism that is dependent on hypothalamic AMPK activation. Concomitantly, fructose-stimulated gluconeogenesis, hepatic PEPCK expression, and glucocorticoid receptor binding to the PEPCK gene were suppressed by pharmacological glucocorticoid receptor blockage. Altogether the data presented herein support the hypothesis that fructose-induced hypothalamic AMPK activation stimulates hepatic gluconeogenesis by increasing corticosterone levels. (Endocrinology 153: 3633-3645, 2012)
Resumo:
Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
Ascorbic acid or vitamin C is involved in a number of biochemical pathways that are important to exercise metabolism and the health of exercising individuals. This review reports the results of studies investigating the requirement for vitamin C with exercise on the basis of dietary vitamin C intakes, the response to supplementation and alterations in plasma, serum, and leukocyte ascorbic acid concentration following both acute exercise and regular training. The possible physiological significance of changes in ascorbic acid with exercise is also addressed. Exercise generally causes a transient increase in circulating ascorbic acid in the hours following exercise, but a decline below pre-exercise levels occurs in the days after prolonged exercise. These changes could be associated with increased exercise-induced oxidative stress. On the basis of alterations in the concentration of ascorbic acid within the blood, it remains unclear if regular exercise increases the metabolism of vitamin C. However, the similar dietary intakes and responses to supplementation between athletes and nonathletes suggest that regular exercise does not increase the requirement for vitamin C in athletes. Two novel hypotheses are put forward to explain recent findings of attenuated levels of cortisol postexercise following supplementation with high doses of vitamin C.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
RESUMO: Na sociedade contemporânea a diabetes tipo 2 e a obesidade estão a aumentar exponencialmente, representando um grave problema de saúde pública. De acordo com a IDF “A diabetes e a obesidade são o principal problema de saúde pública do século XXI’. Para além destas duas patologias, a prevalência de esteatose hepática não-alcoólica (NAFLD), entre a população obesa e diabética, é de cerca de 90%. O aumento da obesidade, diabetes e NAFLD tem uma forte correlação com o aumento do consumo de gorduras e açúcares, acompanhado de um decréscimo acentuado da actividade física. A obesidade, diabetes e NAFLD tem sido escrupolosamente investigada mas as terapêuticas disponíveis continuam a ser muito limitadas. Tendo em conta o número crescente e alarmante de obesos e diabéticos o conhecimento detalhado da patofisiologia da obesidade, diabetes e NAFLD, tendo em vista a necessidade extrema de desenvolvimento de novas estratégias terapêuticas, é da mais elevada urgência. O fígado é reconhecido como um orgão primordial no controlo da homeostase. No estado pós-prandial, o fígado converte a glucose em glicogénio e lípidos. Em contraste, no estado de jejum, o fígado promove a produção de glucose. Sistemas neuronais e hormonais, bem como o estado metabólico do fígado, controlam de forma muito precisa a alternância entre os diferentes substratos metabólicos, dependente do estado prandial. A insulina tem um papel central no controlo do metabolismo energético no fígado; se, por um lado, inibe a produção hepática de glucose e corpos cetónicos, por outro, promove a glicólise e a lipogénese. O metabolismo energético no fígado é também regulado por vários factores de transcrição e co-reguladores que, por sua vez, são regulados pela insulina, glucagina e outras hormonas metabólicas. Em conjunto, todos estes factores e reguladores vão controlar de forma muito estreita a gluconeogénese, a β-oxidação e a lipogénese, no fígado. Para além dos já conhecidos reguladores do metabolismo hepático, novas moléculas têm sido estudadas como tendo um papel fundamental na regulação do metabolismo energético no fígado. Qualquer desequilíbrio no metabolismo hepático vai contribuir para a insulino-resistência, NAFLD e diabetes tipo 2. O principal objectivo do trabalho de investigação aqui apresentado é o contributo para o estudo detalhado da patogénese da diabetes e obesidade, num contexto de dietas ricas em açúcares e gorduras, e com a perspectiva de explorar novas estratégias terapêuticas. Os objectivos específicos deste trabalho eram: primeiro, determinar se o tratamento com glutationo (GSH) e óxido nítrico (NO) era suficiente para melhorar a insulino-resistência associada ao elevado consumo de sacarose; segundo, determinar o papel da Rho-kinase 1 (ROCK1) na regulação do metabolismo hepático da glucose e dos lípidos; e terceiro, estudar o efeito do metilsulfonilmetano (MSM) em doenças metabólicas associadas à obesidade. Na primeira parte deste trabalho de investigação foram utilizados ratos Wistar machos sujeitos a uma dieta rica em sacarose (HS). Tal como esperado, estes animais apresentavam insulino-resistência e hiperinsulinémia. A dieta HS levou ao aumento dos níveis hepáticos de NO e ao decréscimo dos níveis de GSH no fígado. Em jejum, a administração intraportal de GSH e NO, a animais saudáveis promoveu um aumento significativo da sensibilidade à insulina. Também nestes animais, a administração intravenosa de S-nitrosotióis, compostos orgânicos que contém um grupo nitroso acoplado a um átomo de enxofre de um tiol, promoveu o aumento significativo da sensibilidade à insulina. Pelo contrário, em animais sujeitos à dieta HS, as doses padrão de GSH + NO e de S-nitrosotióis não conseguiram promover o aumento da sensibilidade à insulina. No entanto, ao aumentar a dose de S-nitrosotióis administrados por via intravenosa, foi possível observar o aumento da sensibilidade à insulina dependente da dose, indicando um possível papel dos S-nitrosotióis como sensibilizadores de insulina. O estudo detalhado do papel dos S-nitrosotióis na via de sinalização da insulina revelou que há um aumento da fosforilação do receptor da insulina (IR) e da proteína cinase B (Akt), sugerindo um efeito dos S-nitrosotióis nesta via de sinalização. Os resultados apresentados nesta primeira parte sugerem que os S-nitrosotióis promovem a correcta acção da insulina, podendo vir a ser importantes alvos terapêuticos. Na segunda parte deste trabalho de investigação utilizámos murganhos, com uma delecção específica da ROCK1 no fígado, e sujeitos a uma dieta rica em lípidos (HFD). Foi possível concluir que a ausência da ROCK1 no fígado previne a obesidade, melhora a sensibilidade à insulina e protege contra a esteatose hepática. A ausência de ROCK1 no fígado levou a um decréscimo significativo da expressão génica de genes associados à lipogénese, com uma diminuição acentuada do fluxo metabólico associado a esta via. Pelo contrário, a sobreexpressão de ROCK1, exclusivamente no fígado, promove a insulino-resistência e a esteatose hepática no contexto de obesidade induzida pela dieta. Para além disto, a delecção da ROCK1 no fígado de animais obesos e diabéticos, os murganhos deficientes em leptina, corroborou os dados obtidos no primeiro modelo animal, com a franca melhoria da hiperglicémia, hiperinsulinémia e esteatose hepática. Os dados que compõem esta parte do trabalho de investigação sugerem que a ROCK1 tem um papel crucial na regulação do metabolismo lipídico. Na terceira e última parte deste trabalho de investigação foi investigado o efeito do composto metilsulfunilmetano (MSM), um composto organosulfúrico naturalmente presente em plantas e utilizado também como suplemento dietético, em murganhos obesos e insulino-resistentes, por exposição a uma dieta rica em lípidos (DIO). O tratamento com MSM melhorou a insulino-resistência e protegeu contra a esteatose hepática. O conteúdo hepático em triglicéridos e colesterol também diminuíu de forma significativa nos animais DIO sujeitos ao tratamento com MSM, bem como a expressão génica associada à lipogénese. Para além disto, o tratamento com MSM levou a uma diminuição da expressão génica associada à inflamação. De realçar que o tratamento com MSM levou a uma melhoria do perfil hematopoiético destes animais, tanto na medula óssea como no sangue. Para comprovar o efeito benéfico do MSM na obesidade e insulino-resistência utilizámos murganhos deficientes no receptor da leptina, e por isso obesos e diabéticos, tendo observado um perfil semelhante ao obtido para murganhos sujeitos a uma dieta rica em lípidos e tratados com MSM. Concluímos, através dos dados recolhidos, que o MSM como suplemento pode ter efeitos benéficos na hiperinsulinémia, insulino-resistência e inflamação que caracterizam a diabetes tipo 2. Em resumo, os dados obtidos neste trabalho de investigação mostram que os S-nitrosotióis podem ter um papel importante como sensibilizadores da insulina, promovendo um aumento da sensibilidade à insulina num contexto de dietas ricas em sacarose. Para além disto, estudos in vitro, sugerem que os S-nitrosotióis regulam, especificamente, a via de sinalização da insulina. Este trabalho teve também como objectivo o estudo da ROCK1 como regulador do metabolismo da glucose e dos lípidos no fígado. Através do estudo de animais com uma delecção ou uma sobreexpressão da ROCK1 no fígado mostrou-se que esta tem um papel crucial na patogénese da obesidade e diabetes tipo 2, especificamente através do controlo da lipogénese de novo. Finalmente, foi também objectivo deste trabalho, explorar o efeito do MSM em animais DIO e deficientes em leptina. O tratamento com MSM protege de forma evidente contra a obesidade e insulino-resistência, com especial enfâse para a capacidade que esta molécula demonstrou ter na protecção contra a inflamação. Em conjunto os vários estudos aqui apresentados mostram que tanto os S-nitrosotióis como a ROCK1 têm um papel na patogénese da obesidade e diabetes tipo 2 e que a utilização de MSM como suplemento às terapêuticas convencionais pode ter um papel no tratamentos de doenças metabólicas.-------------------------------ABSTRACT: In modern western societies type 2 diabetes and obesity are increasing exponentially, representing a somber public concern. According to the International Diabetes Federation (IDF) ‘Diabetes and Obesity are the biggest public health challenges of the 21st century’. Aside from these the prevalence of nonalcoholic fatty liver disease (NAFLD), among the diabetic and obese population, is as high as 90%. It is now well established that the increase in obesity, diabetes and NAFLD strongly correlates with an increase in fat and sugar intake in our diet, alongside physical inactivity. The pathogenesis of obesity, diabetes and NAFLD has been thoroughly studied but the treatment options available are still narrow. Considering the alarming number in the obese and diabetic population the complete understanding of the pathogenesis, keeping in mind that new therapeutic strategies need to be attained, is of the highest urgency. The liver has been well established as a fundamental organ in regulating whole-body homeostasis. In the fed state the liver converts the glucose into glycogen and lipids. Conversely, in the fasted state, glucose will be produced in the liver. Neuronal and hormonal systems, as well as the hepatic metabolic states, tightly control the fast to fed switch in metabolic fuels. Insulin has a central role in controlling hepatic energy metabolism, by suppressing glucose production and ketogenesis, while stimulating glycolysis and lipogenesis. Liver energy metabolism is also regulated by various transcription factors and coregulators that are, in turn, regulated by insulin, glucagon and other metabolic hormones. Together, these regulators will act to control gluconeogenesis, β-oxidation and lipogenesis in the liver. Aside from the well-established regulators of liver energy metabolism new molecules are being studied has having a role in regulating hepatic metabolism. Any imbalance in the liver energy metabolism is a major contributor to insulin resistance, NAFLD and type 2 diabetes. The overall goal of this research work was to contribute to the understanding of the pathogenesis of diabetes and obesity, on a setting of high-sucrose and high-fat diets, and to explore potential therapeutic options. The specific aims were: first, to determine if treatment with glutathione (GSH) and nitric oxide (NO) was sufficient to ameliorate insulin resistance induced by high-sucrose feeding; second, to determine the physiological role of rho-kinase 1 (ROCK1) in regulating hepatic and lipid metabolism; and third, to study the effect of methylsulfonylmethane (MSM) on obesity-linked metabolic disorders. In the first part of this research work we used male Wistar rats fed a high-sucrose (HS) diet. As expected, rats fed a HS diet were insulin resistant and hyperinsulinemic. HS feeding increased hepatic levels of NO, while decreasing GSH. In fasted healthy animals administration of both GSH and NO, to the liver, was able to increase insulin sensitivity. Intravenous administration of S-nitrosothiols, organic compounds containing a nitroso group attached to the sulfur atom of a thiol, in fasted control animals also increased insulin sensitivity. Under HS feeding the standard doses of GSH + NO and S-nitrosothiols were unable to promote an increase in insulin sensitivity. However, the intravenous administration of increasing concentrations of S-nitrosothiols was able to restore insulin sensitivity, suggesting that S-nitrosothiols have an insulin sensitizing effect. Investigation of the effect of S-nitrosothiols on the insulin signaling pathway showed increased phosphorylation of the insulin receptor (IR) and protein kinase B (Akt), suggesting that S-nitrosothiols may have an effect on the insulin signaling pathway. Together, these data showed that S-nitrosothiols promote normal insulin action, suggesting that they may act as potential pharmacological tools. In the second part of this research work we used liver-specific ROCK1 knockout mice fed a high-fat (HF) diet. Liver-specific deletion of ROCK1 prevented obesity, improved insulin sensitivity and protected against hepatic steatosis. Deficiency of ROCK1 in the liver caused a significant decrease in the gene expression of lipogenesis associated gene, ultimately leading to decreased lipogenesis. Contrariwise, ROCK1 overexpression in the liver promoted insulin resistance and hepatic steatosis in diet-induced obesity. Furthermore, liver-specific deletion of ROCK1 in obese and diabetic mice, the leptin-deficient mice, improved the typical hyperglycemia, hyperinsulinemia and liver steatosis. Together, these data identify ROCK1 as a crucial regulator of lipid metabolism. In the third and final part of this research work we investigated the effect of MSM, an organosulfur compound naturally found in plants and used as a dietary supplement, on diet-induced obese (DIO) and insulin resistant mice. MSM treatment ameliorated insulin resistance and protected against hepatosteatosis. Hepatic content in triglycerides and cholesterol was significantly decreased by MSM treatment, as well as lipogenesis associated gene expression. Furthermore, MSM treated mice had decreased inflammation associated gene expression in the liver. Importantly, FACS analysis showed that MSM treatment rescued the inflammatory hematopoietic phenotype of DIO mice in the bone marrow and the peripheral blood. Moreover, MSM treatment of the obese and diabetic mice, the leptin-deficient mice, resulted in similar effects as the ones observed for DIO mice. Collectively, these data suggest that MSM supplementation has a beneficial effect on hyperinsulinemia, insulin resistance and inflammation, which are often found in type 2 diabetes. In conclusion, this research work showed that S-nitrosothiols may play a role as insulin sensitizers, restoring insulin sensitivity in a setting of high-sucrose induced insulin resistance. Furthermore, in vitro studies suggest that S-nitrosothiols specifically regulate the insulin signaling pathway. This research work also investigated the role of hepatic ROCK1 in regulation of glucose and lipid metabolism. Using liver-specific ROCK 1 knockout and ROCK1 overexpressing mice it was shown that ROCK1 plays a role in the pathogenesis of obesity and type 2 diabetes, specifically through regulation of the de novo lipogenesis pathway. Finally, this research work aimed to explore the effect of MSM in DIO and leptin receptor-deficient mice. MSM strongly protects against obesity and insulin resistance, moreover showed a robust ability to decrease inflammation. Together, the individual studies that compose this dissertation showed that S-nitrosothiols and ROCK1 play a role in the pathogenesis of obesity and type 2 diabetes and that MSM supplementation may have a role in the treatment of metabolic disorders.
Resumo:
Amino acids have been reported to increase endogenous glucose production in normal human subjects during hyperinsulinemia: however, controversy exists as to whether insulin-mediated glucose disposal is inhibited under these conditions. The effect of an amino acid infusion on glucose oxidation rate has so far not been determined. Substrate oxidation rates, endogenous glucose production, and [13C]glucose synthesis from [13C]bicarbonate were measured in six normal human subjects during sequential infusions of exogenous glucose and exogenous glucose with (n = 5) or without (n = 5) exogenous amino acids. Amino acids increased endogenous glucose production by 84% and [13C]glucose synthesis by 235%. Glucose oxidation estimated from indirect calorimetry decreased slightly after amino acids, but glucose oxidation estimated from [13C]glucose-13CO2 data was increased by 14%. It is concluded that gluconeogenesis is the major pathway of amino acid degradation. During amino acid administration, indirect calorimetry underestimates the true rate of glucose oxidation, whereas glucose oxidation calculated from the 13C enrichment of expired CO2 during [U-13C]glucose infusion does not. A slight stimulation of glucose oxidation during amino acid infusion, concomitant with an increased plasma insulin concentration, indicates that amino acids do not inhibit glucose oxidation.
Resumo:
Indirect calorimetry based on respiratory exchange measurement has been successfully used from the beginning of the century to obtain an estimate of heat production (energy expenditure) in human subjects and animals. The errors inherent to this classical technique can stem from various sources: 1) model of calculation and assumptions, 2) calorimetric factors used, 3) technical factors and 4) human factors. The physiological and biochemical factors influencing the interpretation of calorimetric data include a change in the size of the bicarbonate and urea pools and the accumulation or loss (via breath, urine or sweat) of intermediary metabolites (gluconeogenesis, ketogenesis). More recently, respiratory gas exchange data have been used to estimate substrate utilization rates in various physiological and metabolic situations (fasting, post-prandial state, etc.). It should be recalled that indirect calorimetry provides an index of overall substrate disappearance rates. This is incorrectly assumed to be equivalent to substrate "oxidation" rates. Unfortunately, there is no adequate golden standard to validate whole body substrate "oxidation" rates, and this contrasts to the "validation" of heat production by indirect calorimetry, through use of direct calorimetry under strict thermal equilibrium conditions. Tracer techniques using stable (or radioactive) isotopes, represent an independent way of assessing substrate utilization rates. When carbohydrate metabolism is measured with both techniques, indirect calorimetry generally provides consistent glucose "oxidation" rates as compared to isotopic tracers, but only when certain metabolic processes (such as gluconeogenesis and lipogenesis) are minimal or / and when the respiratory quotients are not at the extreme of the physiological range. However, it is believed that the tracer techniques underestimate true glucose "oxidation" rates due to the failure to account for glycogenolysis in the tissue storing glucose, since this escapes the systemic circulation. A major advantage of isotopic techniques is that they are able to estimate (given certain assumptions) various metabolic processes (such as gluconeogenesis) in a noninvasive way. Furthermore when, in addition to the 3 macronutrients, a fourth substrate is administered (such as ethanol), isotopic quantification of substrate "oxidation" allows one to eliminate the inherent assumptions made by indirect calorimetry. In conclusion, isotopic tracers techniques and indirect calorimetry should be considered as complementary techniques, in particular since the tracer techniques require the measurement of carbon dioxide production obtained by indirect calorimetry. However, it should be kept in mind that the assessment of substrate oxidation by indirect calorimetry may involve large errors in particular over a short period of time. By indirect calorimetry, energy expenditure (heat production) is calculated with substantially less error than substrate oxidation rates.
Resumo:
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.