462 resultados para GLUCOCORTICOIDS
Resumo:
Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells.
Resumo:
Glucocorticoids (GCs) are routinely administered systemically or injected into the eye when treating numerous ocular diseases; however, their toxicity on the retinal microvasculature has not been previously investigated. In this article, the effects of hydrocortisone (Hydro), dexamethasone, dexamethasone-phosphate and triamcinolone acetonide (TA) were evaluated in vitro on human skin microcirculation cells and, bovine endothelial retinal cells, ex-vivo, on flat mounted rat retinas. The degree of GCs induced endothelial cell death varied according to the endothelial cell type and GCs chemical properties. GCs toxicity was higher in skin microvascular endothelial cells and for hydrophobic GC formulations. The mechanism of cell death differed between GCs, Hydro and TA activated the leukocyte elastase inhibitor/L-DNase II pathways but did not activate caspases. The mechanisms of cell death observed in cell cultures were similar to those observed in rat retinal explants. Taken together these results indicate that particular attention should be paid to the potential vascular side effects when administrating GCs clinically and in particular when developing sustained-release intraocular devices.
Resumo:
The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic, or defense responses are practically immediate, the procrastinated response do not seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein, and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release). These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e., levels) of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment). Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause) again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.
Resumo:
The influence of stress in an environment, according with the behavioral and endocrine variables of primates, are increasingly being studied by a diversity of authors, and have shown that abnormal behaviors associated with increased glucocorticoids may be directly related with the impairment of their well-being. In this work were used 22 adult chimpanzees (Pan troglodytes), 11 males and 11 females, kept in captivity in three different institutions. All animals had their behavior registered by focal session using a 30 seconds sample interval, during six months, totaling 4,800 registries per each animal. During this period, fecal samples were collected 3 times a week for the extraction and measurement of the concentration of fecal metabolites of glucocorticoid by radioimmunoassay. Of the total observed, stereotypical behaviors represented 13,45±2.76%, and among them, self-mutilation represented 38.28±3.98 %. The animals were classified into three different scores, according with the percentage of body surface with alopecia due to self-mutilation. It was found a positive correlation of high intensity between the scores of alopecia due to the observed mutilation and the average concentrations of fecal metabolites of glucocorticoids. This result strongly suggests that this measurement of self-mutilation in a chimpanzee can be used as an important auxiliary tool to evaluate de conditions of adaptation of an animal in captivity, functioning as a direct indicator of the presence of chronic stress.
Resumo:
We compared the intensity and frequency of arthritis in old (8-12 months, N = 12) and juvenile (2 months, N = 10) rats and determined the role played by adrenal glands in this disorder. Arthritis was induced by subcutaneous injection of Mycobacterium butyricum at the base of the tail of female Holtzman rats at day zero. Paw edema and hyperalgesia were monitored from day zero to day 21 after induction as signs of arthritis development. Some (N = 11) old animals were adrenalectomized bilaterally and treated with dexamethasone or celecoxib immediately following surgery. All bilaterally adrenalectomized old animals became susceptible to arthritis and the onset of disease was shortened from the 10th to the 5th day. Hyperalgesia and paw edema responses were less frequent in older animals (50 and 25% compared to control juvenile rats, respectively), although old responder animals showed responses of similar intensity to those of their juvenile counterparts: by the 14th day the data for hyperalgesia were juvenile = 0.8 ± 0.07/old = 0.8 ± 0.09, and for paw edema juvenile = 56.6 ± 6.04/old = 32.24 ± 12.7, reported as delta% increase in paw edema. Chronic treatment of adrenalectomized old animals with dexamethasone (0.01 or 0.1 mg/kg) but not celecoxib (3 mg/kg), once daily for 21 days by gavage, abolished the effects of adrenalectomy, in particular those related to the hyperalgesia response (old = 0.95 ± 0.03/dexamethasone = 0 ± 0; 14th day), thus suggesting a specific participation of circulating corticosteroids in the modulation of pain in old arthritic rats.
Resumo:
The involvement of the hypothalamic-pituitary-adrenal axis in the control of body fluid homeostasis has been extensively investigated in the past few years. In the present study, we reviewed the recent results obtained using different approaches to investigate the effects of glucocorticoids on the mechanisms of oxytocin and vasopressin synthesis and secretion in response to acute and chronic plasma volume and osmolality changes. The data presented here suggest that glucocorticoids are not only involved in the mechanisms underlying the fast release but also in the transcriptional events that lead to decreased synthesis and secretion of these neuropeptides, particularly oxytocin, under diverse experimental conditions of altered fluid volume and tonicity. The endocannabinoid system, through its effects on glutamatergic neurotransmission within the hypothalamus and the nuclear factor κB-mediated transcriptional activity, seems to be also involved in the specific mechanisms by which glucocorticoids exert their central effects on neurohypophyseal hormone synthesis and secretion.
Resumo:
There is evidence that the major mediators of stress, i.e., catecholamines and glucocorticoids, play an important role in modulating thymopoiesis and consequently immune responses. Furthermore, there are data suggesting that glucocorticoids influence catecholamine action. Therefore, to assess the putative relevance of glucocorticoid-catecholamine interplay in the modulation of thymopoiesis we analyzed thymocyte differentiation/maturation in non-adrenalectomized and andrenalectomized rats subjected to treatment with propranolol (0.4 mg·100 g body weight-1·day-1) for 4 days. The effects of β-adrenoceptor blockade on thymopoiesis in non-adrenalectomized rats differed not only quantitatively but also qualitatively from those in adrenalectomized rats. In adrenalectomized rats, besides a more efficient thymopoiesis [judged by a more pronounced increase in the relative proportion of the most mature single-positive TCRαβhigh thymocytes as revealed by two-way ANOVA; for CD4+CD8- F (1,20) = 10.92, P < 0.01; for CD4-CD8+ F (1,20) = 7.47, P < 0.05], a skewed thymocyte maturation towards the CD4-CD8+ phenotype, and consequently a diminished CD4+CD8-/CD4-CD8+ mature TCRαβhigh thymocyte ratio (3.41 ± 0.21 in non-adrenalectomized rats vs 2.90 ± 0.31 in adrenalectomized rats, P < 0.05) were found. Therefore, we assumed that catecholaminergic modulation of thymopoiesis exhibits a substantial degree of glucocorticoid-dependent plasticity. Given that glucocorticoids, apart from catecholamine synthesis, influence adrenoceptor expression, we also hypothesized that the lack of adrenal glucocorticoids affected not only β-adrenoceptor- but also α-adrenoceptor-mediated modulation of thymopoiesis.
Resumo:
The estrogen receptor and glucocorticoid receptor are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER) or membrane GR (mGR) that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.
Resumo:
Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-kappa B (nuclear factor kappa B), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/ SAPK (c-Jun N-terminal protein kinase/ stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-kappa B, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/ 2, p38, SAPK/ JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.
Resumo:
Bone morphogenetic protein 9 (BMP-9), a member of the TGF-beta superfamily predominantly expressed in nonparenchymal liver cells, has been demonstrated to improve glucose homeostasis in diabetic mice. Along with this therapeutic effect, BMP-9 was proposed as a candidate for the hepatic insulin-sensitizing substance ( HISS). Whether BMP-9 plays a physiological role in glucose homeostasis is still unknown. In the present study, we show that BMP-9 expression and processing is severely reduced in the liver of insulin-resistant rats. BMP-9 expression and processing was directly stimulated by in situ exposition of the liver to the combination of glucose and insulin and oral glucose in overnight fasted rats. Additionally, prolonged fasting ( 72 h) abrogated refeeding-induced BMP-9 expression and processing. Previous exposition to dexamethasone, a known inductor of insulin resistance, reduced BMP-9 processing stimulated by the combination of insulin and glucose. Finally, we show that neutralization of BMP-9 with an anti-BMP-9 antibody induces glucose intolerance and insulin resistance in 12-h fasted rats. Collectively, the present results demonstrate that BMP-9 plays an important role in the control of glucose homeostasis of the normal rat. Additionally, BMP-9 is expressed and processed in an HISS-like fashion, which is impaired in the presence of insulin resistance. BMP-9 regulation according to the feeding status and the presence of diabetogenic factors reinforces the hypothesis that BMP-9 might exert the role of HISS in glucose homeostasis physiology. ( Endocrinology 149: 6326-6335, 2008)
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
In this study, a commercial enzyme immunoassay (EIA) was validated in detecting glucocorticoids in Pampas deer feces, in order to investigate the influence of several factors on the adrenocortical function. Fecal samples, behavioral data and information concerning male grouping and antlers status were collected at a monthly basis during a 1 year period from free-ranging stags living at Emas National Park, Brazil (18 degrees S/52 degrees W). The results revealed that concentrations of fecal glucocorticoids in winter were significantly higher than those corresponding to spring and summer. In addition, dry season data presented higher levels than during the wet season. Significant difference was found between fecal levels of breeding stags in summer and nonbreeding stags, whereas no difference was observed between breeding stags in winter and nonbreeding stags. on the other hand, males from areas with frequent human disturbance exhibited higher glucocorticoid concentrations and flight distances than individuals from areas of lower human activity. Males with antlers in velvet had elevated levels compared with animals in hard antler or antler casting. Also, we found that glucocorticoid levels were higher in groups with three or more males than in groups with only one male. The flight distances showed positive correlation with fecal glucocorticoid. These data indicate that fecal glucocorticoid provides a useful approach in the evaluation of physiological effects of environment, inter-individuals relationship and human-induced stressors on free-ranging Pampas deer stags. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
During pregnancy, the maternal endocrine pancreas undergoes, as a consequence of placental lactogens and prolactin (PR,L) action, functional changes that are characterized by increased glucose-induced insulin secretion. After delivery, the maternal endocrine pancreas rapidly returns to nonpregnant state, which is mainly attributed to the increased serum levels of glucocorticoids (GCs). Although GCs are known to decrease insulin secretion and counteract PRL action, the mechanisms for these effects are poorly understood. We have previously demonstrated that signal transducer and activator of transcription 3 (STAT3) is increased in islets treated with PRL. In the present study, we show that STAT3 expression and serine phosphorylation are increased in pancreatic islets at the end of pregnancy (P19). STAT3 serine phosphorylation rapidly returned to basal levels 3 days after delivery (U). The expression of the sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), a crucial protein involved in the regulation of calcium handling in P-cells, was also increased in P19, returning to basal levels at L3. PRL increased SERCA2 and STAT3 expressions and STAT3 serine phosphorylation in RINm5F cells. The upregulation of SERCA2 by PRL was abolished after STAT3 knockdown. Moreover, PRL-induced STAT3 serine phosphorylation and SERCA2 expression were inhibited by dexamethasone (DEX). Insulin secretion from islets of PI 9 rats pre-incubated with thapsigargin and L3 rats showed a dramatic suppression of first phase of insulin release. The present results indicate that PRL regulates SERCA2 expression by a STAT3-dependent mechanism. PRL effect is counteracted by DEX and might contribute to the adaptation of maternal endocrine pancreas during the peripartum period.