982 resultados para GLACIAL PERIODS
Resumo:
The term black carbon is used to describe a relatively inert and ubiquitous form of carbon, comprising a range of materials from char and charcoal to element or graphite carbon produced by the incomplete combustion of fossil fuels and biomass. Due to its inertness, the BC in soils, lacustrine and marine sediments and ice can persist over a long period of time. So BC signatures in geological deposits can be used as evidence of natural fires happened in their surroundings. To study the temporal and spatial changes in paleofires over the Chinese Loess Plateau, black carbon concentrations were analyzed on the loess-paleosol samples from three sections including Lijiayuan, Lingtai and Weinan along a north-south transect. Using the orbitally-tuned time-scales of the sections, the black carbon sedimentation rates (BCSR) were calculated. Meanwhile, with objective to document fine resolution fire history during late Pleistocene and Holocene periods, we measured BC concentrations of loess-paleosol samples at dense sampling intervals since 28 ka BP. in Lijiayuan section. The BCSR of the samples were also calculated. In addition, we also conducted observation on black carbon morphologies to examine their sources. Based on the results, the following remarks can be concluded: 1. In the last two glacial cycles, the BCSR values in glacial periods are 2-3 times higher than in interglacial periods, and the BCSR variability has a relatively strong precession-associated 23 kyr period, suggesting that the glacial cold-dry climate conditions were apt to induce natural fires over the Loess Plateau, 2. Comparison of the BCSR records among the three loess sections demonstrates that natural fire occurrence was much more intensive and frequent in the northern and interglacial periods. 3. Pollen records and carbon isotope analyses of organic matter have shown that the Loess Plateau was covered by an Artemisia-dominated grassland vegetation both during glacial and interglacial periods, So grassland fires were the dominant fire types in the Plateau, which is also corroborated by the observation of black carbon morphology. In addition, statistics and comparison of BC particle sizes among the sections demonstrated that BC records probably reflected local fires. 4. According to previous studies about the effect of fires on vegetation changes, we considered that the fires might play an important role in the expansion of grassland during glacial periods, besides the control of climate changes. 5. The high resolution black carbon record in Lijiayuan section has shown that the BCSR series well documented Younger dryas (YD) and Heinrich (HI和H2) events, suggesting that natural fires in the northwestern part of Chinese Loess Plateau could regularly respond to the millennial scale climate oscillation.
North atlantic deepwater temperature change during late pliocene and late quaternary climatic cycles
Resumo:
Variations in the ratio of magnesium to calcium (Mg/Ca) in fossil ostracodes from Deep Sea Drilling Project Site 607 in the deep North Atlantic show that the change in bottom water temperature during late Pliocene 41,000-year obliquity cycles averaged 1.5°C between 3.2 and 2.8 million years ago (Ma) and increased to 2.3°C between 2.8 and 2.3 Ma, coincidentally with the intensification of Northern Hemisphere glaciation. During the last two 100,000-year glacial-to-interglacial climatic cycles of the Quaternary, bottom water temperatures changed by 4.5°C. These results show that glacial deepwater cooling has intensified since 3.2 Ma, most likely as the result of progressively diminished deep-water production in the North Atlantic and of the greater influence of Antarctic bottom water in the North Atlantic during glacial periods. The ostracode Mg/Ca data also allow the direct determination of the temperature component of the benthic foraminiferal oxygen isotope record from Site 607, as well as derivation of a hypothetical sea-level curve for the late Pliocene and late Quaternary. The effects of dissolution on the Mg/Ca ratios of ostracode shells appear to have been minimal.
Resumo:
Les anàlisis realitzades en cent deu poblacions de truita comuna (Salmo trutta) que abarquen el seu rang natural de distribució indiquen que el patró filogenètic es relaciona amb les tres grans vessants on es troba distribuïda l'espècie: ponto-càspia, atlàntica i mediterrània. Aquesta diferenciació estaria associada a l'aïllament de les vessants durant el Quaternari. L'origen de l'espècie es relaciona amb la vessant ponto-càspia, d'acord amb els models biogeogràfics que postulen l'origen asiàtic de la ictiofauna europea. S'ha detectat també un segon nivell de divergència dins de cada vessant que dóna com a resultat l'existència de sis llinatges evolutius: Atlàntic i Duero a la vessant atlàntica, els llinatges Adriàtic, Mediterrani i Marmoratus als rius mediterranis, i el llinatge Danubi a la zona ponto-càspia. Les glaciacions del Pleistocè han modificat profundament el rang de distribució de la truita comuna, especialment a la vessant atlàntica, on s'han proposat quatre grans refugis glacials: a l'est de la capa de gel, a Europa central, a l'entorn del canal de la Mànega i a l'entorn del golf de Biscaia; tot i que només els tres primers haurien participat en la recolonització del nord d'Europa al final de l'última glaciació. El quart refugi, que inclou el sud de França i el Cantàbric hauria estat l'origen de l'expansió cap al sud durant el Pleistocè Superior d'un grup de poblacions distribuïdes actualment a la vessant atlàntica ibèrica, i també hauria servit de base per a l'expansió cap al nord d'altres grups de truita durant interglacials anteriors. A la vessant atlàntica de la peninsula Ibèrica, l'estructura poblacional es troba associada a la xarxa hidrogràfica i es determinen fins a cinc unitats poblacionals: les truites dels rius Cantàbrics, les del Miño, les del Duero, les del Tajo i les del Guadalquivir. Les poblacions del Guadalquivir pertanyerien a un grup d'influència mediterrània. Els marcadors d'al·lozims i de DNA mitocondrial es troben fortament correlacionats en aquesta vessant, on apunten cap als mateixos grups de poblacions. Per contra, els rius de la vessant mediterrània haurien estat colonitzats pels llinatges Adriàtic i Mediterrani i s'hauria produït una intensa intergradació secundària entre aquests llinatges durant els períodes glacials a partir de l'expansió de les poblacions retingudes a les capçaleres durant els interglacials. Els grups de hibridació, l'aïllament i la deriva en el període interglacial fa que els grups de poblacions identificats pels marcadors d'al·lozims i de DNA mitocondrial no coincideixin.
Resumo:
In the northern hemisphere, glacial periods have had profound and lasting effects on the population genetics of numerous species, with founder effects often persisting for many generations in formerly glaciated regions. We found an unusual example of this in the freshwater bryozoan Cristatella mucedo, which showed regional differences in haplotype diversity with relatively low levels of haplotype diversity in northern Europe compared to central/southern Europe despite previous evidence for frequent dispersal between C. mucedo populations. Such contradictions between high dispersal and low gene flow have now been reported in several other freshwater taxa and may be attributed to persistent founder effects following colonization of sites by a few individuals whose efficient reproduction leads to rapid population growth. Alternatively, selection may determine which genotypes can thrive in northerly locations, or it may be that C. mucedo has undergone cryptic speciation. Future work on adaptive genomic regions is required before we can understand how gene flow, local adaptation, and speciation influence the current distribution patterns of bryozoans and other freshwater invertebrates.
Resumo:
We show that diapycnal mixing can drive a significant Antarctic Circumpolar Current (ACC) volume transport, even when the mixing is located remotely in northern-hemisphere ocean basins. In the case of remote forcing, the globally-averaged diapycnal mixing coefficient is the important parameter. This result is anticipated from theoretical arguments and demonstrated in a global ocean circulation model. The impact of enhanced diapycnal mixing on the ACC during glacial periods is discussed.
Resumo:
Atmospheric CO2 concentration has varied from minima of 170-200 ppm in glacials to maxima of 280-300 ppm in the recent interglacials. Photosynthesis by C-3 plants is highly sensitive to CO2 concentration variations in this range. Physiological consequences of the CO2 changes should therefore be discernible in palaeodata. Several lines of evidence support this expectation. Reduced terrestrial carbon storage during glacials, indicated by the shift in stable isotope composition of dissolved inorganic carbon in the ocean, cannot be explained by climate or sea-level changes. It is however consistent with predictions of current process-based models that propagate known physiological CO2 effects into net primary production at the ecosystem scale. Restricted forest cover during glacial periods, indicated by pollen assemblages dominated by non-arboreal taxa, cannot be reproduced accurately by palaeoclimate models unless CO2 effects on C-3-C-4 plant competition are also modelled. It follows that methods to reconstruct climate from palaeodata should account for CO2 concentration changes. When they do so, they yield results more consistent with palaeoclimate models. In conclusion, the palaeorecord of the Late Quaternary, interpreted with the help of climate and ecosystem models, provides evidence that CO2 effects at the ecosystem scale are neither trivial nor transient.
Resumo:
During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to effects of low precipitation and low atmospheric (CO2) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The effect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45°) mean change in forcing (LGM minus modern) is estimated to be small (–0.9 to +0.2 W m–2), especially when compared to nearly –20 W m–2 due to reflection from the extended ice sheets. Although the net effect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (–2.2 to –3.2 W m–2) to the radiative cooling effect of low atmospheric (CO2). Thus, the largest long-term climatic effect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO2) and high atmospheric dust loading may be mutually reinforcing due to multiple positive feedbacks, including the negative radiative forcing effect of dust.
Resumo:
The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles1. According to Qian and Ricklefs1, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia2, 3, 4, 5, 6 show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs1.
Resumo:
The origin of tropical forest diversity has been hotly debated for decades. Although specific mechanisms vary, many such explanations propose some vicariance in the distribution of species during glacial cycles and several have been supported by genetic evidence in Neotropical taxa. However, no consensus exists with regard to the extent or time frame of the vicariance events. Here, we analyse the cytochrome oxidase II mitochondrial gene of 250 Sabethes albiprivus B mosquitoes sampled from western Sao Paulo in Brazil. There was very low population structuring among collection sites (Phi(ST) = 0.03, P = 0.04). Historic demographic analyses and the contemporary geographic distribution of genetic diversity suggest that the populations sampled are not at demographic equilibrium. Three distinct mitochondrial clades were observed in the samples, one of which differed significantly in its geographic distribution relative to the other two within a small sampling area (similar to 70 x 35 km). This fact, supported by the inability of maximum likelihood analyses to achieve adequate fits to simple models for the population demography of the species, suggests a more complex history, possibly involving disjunct forest refugia. This hypothesis is supported by a genetic signal of recent population growth, which is expected if population sizes of this forest-obligate insect increased during the forest expansions that followed glacial periods. Although a time frame cannot be reliably inferred for the vicariance event leading to the three genetic clades, molecular clock estimates place this at similar to 1 Myr before present.
Resumo:
As ilhas Caviana e Mexiana, localizadas na foz do rio Amazonas, são ilhas construídas por sedimentos fluviais e por terrenos bem consolidados que datam do Terciário e que foram separados tectonicamente do continente no início do Holoceno. A composição da avifauna dessas ilhas é analisada tanto do ponto de vista biogeográfico como do ecológico. Registramos 148 espécies de aves para a ilha caviana e 183 para a ilha Mexiana. A discrepância entre o tamanho da área, Caviana é maior que Mexiana, e o número de espécies observado deve-se a uma sub-amostragem de Caviana. Entretanto, a análise da composição demonstrou que Caviana é mais rica em espécies florestais do que Mexiana. Em contrapartida, Mexiana apresentou uma maior riqueza de aves de habitats abertos. Essas diferenças sugerem que a elevação do nível do mar no início do Holoceno provocou a extinção de grande parte da avifauna de sub-bosque de mata na ilha Mexiana. As porções de teso na ilha mexiana não foram submersas, permanecendo a avifauna característica, que também é representada na ilha de Marajó. A análise da distribuição de 157 espécies subdividiu a avifauna em sete categorias: ampla distribuição sul-americana (77), ampla distribuição amazônica (25), distribuição restrita a Amazônia Oriental (07), distribuição restrita ao sul do rio Amazonas e ao leste do rio Tapajós (03), distribuição restrita a várzea (19), ampla distribuição ao norte da Amazônia e ausentes no interflúvio Tocantins-Xingú (05), ampla distribuição no Brasil Central (21). Não reconhecemos elementos restritos ao interflúvio Tocantins-Xingú. Esse fato relaciona-se com fatores ecológicos e não históricos. O padrão relacionado ao norte da Amazônia pode ser interpretado como sendo dispersão recente, através do sistema de ilhas da foz do rio Amazonas, ou pela formação dos arcos Purús e Gurupá, estabelecendo conexão entre a margem direita e esquerda do rio Amazonas, associados ao abaixamento do nível do mar no Pleistoceno. A dispersão ocorreu nos dois sentidos, explicando a existência de um grande número de espécies e subespécies cuja distribuição se restringe a Amazônia Oriental e a dispersão de elementos do Planalto Central para o norte da Amazônia. A última também está relacionada com a expansão das vegetações abertas, características do Planalto Central, nos períodos glaciais.
Resumo:
The endemic stingless honey-making bee Melipona (Melikerria) insularissp.n. on Coiba and Rancheria Islands in Pacific Panama is described, together with the proposed sister species, M. ambigua sp.n. from northeast Colombia. The Coiba Island group and Panama mainland were surveyed, yielding one meliponine endemic (M. insularissp.n.) and six meliponine genera and species. The poor Coiba fauna of amphibians and birds corresponds to the poor social bee fauna and suggests habitat barriers generally precluded recolonization from the mainland during glacial periods. Many animals became extinct, yet some remain as relicts. Melipona insularissp.n. was isolated on accreted terranes of Coiba rainforest in the Panama microplate. Morphology suggests that M. insularissp.n. is not a direct descendant of the San Blas-E. Panama endemic Melikerria, M. triplaridis. A phylogenetic hypothesis corroborates disjunct distributions. Rainforest endemics such as Peltogyne purpurea (Fabaceae) and Ptilotrigona occidentalis (Apidae, Meliponini) also occur as relictual, disjunct populations in Central and South America. These may have been isolated before accelerated biotic exchange began 2.4 Ma. Our work supports the geological findings of both a volcanic arc and the San Blas massif providing a substantial bridge for Melikerria from Colombia and Panama in Eocene to Miocene times. We suggest there have been taxon cycles permitting recolonization during glaciations, whereby colonies of M. insularissp.n. were able to recolonize Rancheria, a 250 ha island, 2 km from Coiba. However, rafting colonies nesting in trees, carried on vegetation mats, may have produced founding populations of Melipona in Central America and on oceanic islands such as Coiba.
Resumo:
Millennial variability is a robust feature of many paleoclimate records, at least throughout the last several glacial cycles. Here we use the mean signal from Antarctic climate events 1 to 4 to probe the EPICA Dome C temperature proxy reconstruction through the last 500 ka for similar millennial-scale events. We find that clusters of millennial events occurred in a regular fashion over half of the time during this with a mean recurrence interval of 21 kyr. We find that there is no consistent link between ice-rafted debris deposition and millennial variability. Instead we speculate that changes in the zonality of atmospheric circulation over the North Atlantic form a viable alternative to freshwater release from icebergs as a trigger for millennial variability. We suggest that millennial changes in the zonality of atmospheric circulation over the North Atlantic are linked to precession via sea-ice feedbacks and that this relationship is modified by the presence of the large, Northern Hemisphere ice sheets during glacial periods.
Resumo:
Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and particulate mineral dust aerosol from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 years. Despite the fact that all three parameters are largely dust-derived, the ratio of nssCa2+ to particulate dust is dependent on the particulate dust concentration itself. We used principal component analysis to extract the joint climatic signal and produce a common high-resolution record of dust flux. This new record is used to identify Antarctic warming events during the past eight glacial periods. The phasing of dust flux and CO2 changes during glacial-interglacial transitions reveals that iron fertilization of the Southern Ocean during the past nine glacial terminations was not the dominant factor in the deglacial rise of CO2 concentrations. Rapid changes in dust flux during glacial terminations and Antarctic warming events point to a rapid response of the southern westerly wind belt in the region of southern South American dust sources on changing climate conditions. The clear lead of these dust changes on temperature rise suggests that an atmospheric reorganization occurred in the Southern Hemisphere before the Southern Ocean warmed significantly.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.