916 resultados para GHG MITIGATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of the present work was to study nutritive strategies for lessening the CH4 formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH4 formation in three individual studies and a small chamber system to measure CH4 released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH4 formation. In vivo assays were performed according to the results of the in vitro assays. , when supplemented to a basal diet (Tifton-85 hay sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH4 emission but the supplementation of the basal diet with EuO did not affect ( > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich , essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH4 emission in ruminants. The microbial community study suggested that the reduction in CH4 production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Date of Acceptance: 16/12/2014 Acknowledgements: This work was carried out with generous funding by the Governments of Germany (GCP/GLO/286/GER) and Norway (GCP/GLO/325/NOR) to the ‘Monitoring and Assessment of GHG Emissions and Mitigation Potential from Agriculture’ Project of the FAO Climate, Energy and Tenure Division. P. Smith is a Royal Society Wolfson Merit Award holder, and his input contributes to the University of Aberdeen Environment and Food Security Theme and to Scotland's ClimateXChange. J. House was funded by a Leverhulme Research Fellowship. The FAO Statistics Division maintains the FAOSTAT Emissions database with regular program funds allocated through Strategic Objective 6. © 2015 John Wiley & Sons Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vários países têm buscado investigar as emissões de gases do efeito estufa (GEE) e amônia (NH3) na atividade animal para melhor compreensão da dinâmica e excesso desses gases na atmosfera. As informações disponíveis na literatura sobre as emissões de GEE e NH3 em aviários são variáveis e incertas devido à diversidade e condições particulares das instalações, bem como das inúmeras diferenças no sistema de criação e das complexas interações observadas nos dejetos dos animais. A caracterização das emissões do setor avícola normalmente é realizada por monitoramento aéreo das concentrações dos gases dentro das instalações de produção. No entanto, alguns métodos adotados são insuficientes devido às interferências de outros gases, razão por que as medições podem não refletir, com exatidão, as emissões reais. Diante dessa complexidade, nesta pesquisa buscou-se aplicar técnicas que apresentam menores interferências, bem como desenvolver um sistema de amostragem para medir diretamente as emissões de N2O, CH4 e NH3 dos dejetos de frangos de corte. No desenvolvimento do método, utilizou-se como referência o princípio da câmara estática fechada e a análise por cromatografia gasosa (CG), para estimar as emissões de GEE. Para quantificação direta das emissões de NH3, adaptou-se um método semiaberto estático, baseado na captura, em meio ácido, do NH3 volatilizado dos dejetos das aves. Adicionalmente, buscou-se monitorar as emissões diárias de NH3, CH4 e N2O dos dejetos dos frangos, considerando o típico manejo de reutilização da cama de frango. Foram propostos modelos empíricos para as predições das emissões de N2O, CH4 e NH3, em função do número de reutilizações da cama, da idade das aves e de propriedades físico-químicas da cama de frango. As emissões acumuladas por quatro ciclos de criação permitiram calcular perdas anuais de 0,14, 0,35, e 72,0 g de N2O, CH4 e NH3 ave-alojada-1 ano-1, respectivamente. Considerando o número de frangos de corte alojados em 2015, a atividade avícola emitiu cerca de 545,1 Gg CO2eq pelo manejo dos dejetos nos aviários, correspondente a 0,04 kg CO2eq por kg de carne. Reduções de 21, 40 e 78% foram observadas nas emissões anuais de N2O, CH4 e NH3, respectivamente, ao utilizar (seis ciclos) a cama somente em um ciclo de criação. Contudo, um balanço de N foi conduzido para contabilizar as entradas e saídas de N na produção de frangos de corte durante os quatro ciclos de criação avaliados. A principal entrada de N no sistema foi pela ração, como entrada secundária, o N via cama de frango, o qual aumentou consideravelmente a cada ciclo de reutilização. Considerando que esta pesquisa apresenta uma metodologia aplicável e inovadora para determinar os fluxos de GEE em galpões abertos no país, os dados serão úteis para o inventário anual brasileiro das emissões de GEE oriundas dos dejetos da avicultura de corte. Os resultados são úteis também para incentivar novas pesquisas que possam avançar no conhecimento de impactos e alternativas de mitigação de GEE na produção de frangos de corte e, adicionalmente, conferir sustentabilidade à produção de carne no Brasil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

United States Air Force (USAF) energy policy is a measured but aggressive response to federal energy policy guidance. Previous USAF efforts, like those of the federal government, focused primarily on energy intensity reduction, cost, and BTU savings, and in certain cases have resulted in facility greenhouse gas (GHG) emission reductions. The USAF now faces the challenge of integrating GHG reduction goals and inventory requirements set forth in Executive Order 13514. Using USAF reported energy consumption data, facility GHG emission estimates have been synthesized to identify trends and elucidate existing energy best practices to be applied as part of overarching USAF GHG mitigation efforts and to highlight areas of possible concern for the integration of EO 13514 into operational USAF policy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Consumer policy approaches regarding green products and solutions can be differentiated by their main focus. “Green positioning” is basically targeted at environmentally aware consumers, while “efficiency-focused positioning” concentrates on the efficiency gain of the product or solution, targeting the whole society, regardless of consumers' environmental awareness. The paper argues that the scope and total environmental benefit can be increased if green products or solutions are promoted in different ways, not only as “green” but also based on other arguments (like cost-efficiency, return on investment, etc.). The paper suggests a model for improving the efficiency of greenhouse gas (GHG)-related consumer policy. Based on the marginal social cost curve and the marginal private cost curve, different (green, yellow, and red) zones of action are identified. GHG mitigation options chosen from those zones are then evaluated with the help of profiling method, addressing the barriers to implementation. Profiling may help design an implementation strategy for the selected options and make consumer policy more effective and acceptable for mass market. Case study results show three different ways of positioning of GHG-related consumer policy in Hungary from 2000 and give practical examples of profiling, based on the latest marginal social cost curve and the contemporary energy saving policy of the state regarding the residential sector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Consumer policy approaches regarding green products and solutions can be differentiated by their main focus. “Green positioning” is basically targeted at environmentally aware consumers, while “efficiency-focused positioning” concentrates on the efficiency gain of the product or solution, targeting the whole society, regardless of consumers' environmental awareness. The paper argues that the scope and total environmental benefit can be increased if green products or solutions are promoted in different ways, not only as “green” but also based on other arguments (like cost-efficiency, return on investment, etc.). The paper suggests a model for improving the efficiency of greenhouse gas (GHG)-related consumer policy. Based on the marginal social cost curve and the marginal private cost curve, different (green, yellow, and red) zones of action are identified. GHG mitigation options chosen from those zones are then evaluated with the help of profiling method, addressing the barriers to implementation. Profiling may help design an implementation strategy for the selected options and make consumer policy more effective and acceptable for mass market. Case study results show three different ways of positioning of GHG-related consumer policy in Hungary from 2000 and give practical examples of profiling, based on the latest marginal social cost curve and the contemporary energy saving policy of the state regarding the residential sector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2014, the Australian Government implemented the Emissions Reduction Fund to offer incentives for businesses to reduce greenhouse gas (GHG) emissions by following approved methods. Beef cattle businesses in northern Australia can participate by applying the 'reducing GHG emissions by feeding nitrates to beef cattle' methodology and the 'beef cattle herd management' methods. The nitrate (NO3) method requires that each baseline area must demonstrate a history of urea use. Projects earn Australian carbon credit units (ACCU) for reducing enteric methane emissions by substituting NO3 for urea at the same amount of fed nitrogen. NO3 must be fed in the form of a lick block because most operations do not have labour or equipment to manage daily supplementation. NO3 concentrations, after a 2-week adaptation period, must not exceed 50 g NO3/adult animal equivalent per day or 7 g NO3/kg dry matter intake per day to reduce the risk of NO3 toxicity. There is also a 'beef cattle herd management' method, approved in 2015, that covers activities that improve the herd emission intensity (emissions per unit of product sold) through change in the diet or management. The present study was conducted to compare the required ACCU or supplement prices for a 2% return on capital when feeding a low or high supplement concentration to breeding stock of either (1) urea, (2) three different forms of NO3 or (3) cottonseed meal (CSM), at N concentrations equivalent to 25 or 50 g urea/animal equivalent, to fasten steer entry to a feedlot (backgrounding), in a typical breeder herd on the coastal speargrass land types in central Queensland. Monte Carlo simulations were run using the software @risk, with probability functions used for (1) urea, NO3 and CSM prices, (2) GHG mitigation, (3) livestock prices and (4) carbon price. Increasing the weight of steers at a set turnoff month by feeding CSM was found to be the most cost-effective option, with or without including the offset income. The required ACCU prices for a 2% return on capital were an order of magnitude higher than were indicative carbon prices in 2015 for the three forms of NO3. The likely costs of participating in ERF projects would reduce the return on capital for all mitigation options. © CSIRO 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a potent agricultural greenhouse gas (GHG). More than 50% of the global anthropogenic N2O flux is attributable to emissions from soil, primarily due to large fertilizer nitrogen (N) applications to corn and other non-leguminous crops. Quantification of the trade–offs between N2O emissions, fertilizer N rate, and crop yield is an essential requirement for informing management strategies aiming to reduce the agricultural sector GHG burden, without compromising productivity and producer livelihood. There is currently great interest in developing and implementing agricultural GHG reduction offset projects for inclusion within carbon offset markets. Nitrous oxide, with a global warming potential (GWP) of 298, is a major target for these endeavours due to the high payback associated with its emission prevention. In this paper we use robust quantitative relationships between fertilizer N rate and N2O emissions, along with a recently developed approach for determining economically profitable N rates for optimized crop yield, to propose a simple, transparent, and robust N2O emission reduction protocol (NERP) for generating agricultural GHG emission reduction credits. This NERP has the advantage of providing an economic and environmental incentive for producers and other stakeholders, necessary requirements in the implementation of agricultural offset projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a September 2010 media release the Prime Minister of Australia presented the terms of reference for the newly established Multi-Party Climate Change Committee. Although the Committee is charged with considering climate change mitigation measures in general, specifically the Committee must consider an appropriate mechanism for the establishment of a carbon price. The purpose of this article is to provide an overview of the mechanisms to be considered by the Climate Change Committee, including the use of emissions trading and carbon levies in other jurisdictions. This article argues that for any effective investigation of a carbon price for Australia to occur, a thorough knowledge of other jurisdictions’ methods for carbon pricing is essential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Greenhouse gas (GHG) emissions are simultaneously exhausting the world's supply of fossil fuels and threatening the global climate. In many developing countries, significant improvement in living standards in recent years due to the accelerating development of their economies has resulted in a disproportionate increase in household energy consumption. Therefore, a major reduction in household carbon emissions (HCEs) is essential if global carbon reduction targets are to be met. To do this, major Organisation for Economic Co-operation and Development (OECD) states have already implemented policies to alleviate the negative environmental effects of household behaviors and less carbon-intensive technologies are also proposed to promote energy efficiency and reduce carbon emissions. However, before any further remedial actions can be contemplated, though, it is important to fully understand the actual causes of such large HCEs and help researchers both gain deep insights into the development of the research domain and identify valuable research topics for future study. This paper reviews existing literature focusing on the domain of HCEs. This critical review provides a systematic understanding of current work in the field, describing the factors influencing HCEs under the themes of household income, household size, age, education level, location, gender and rebound effects. The main quantification methodologies of input–output models, life cycle assessment and emission coefficient methods are also presented, and the proposed measures to mitigate HCEs at the policy, technology and consumer levels. Finally, the limitations of work done to date and further research directions are identified for the benefit of future studies.