940 resultados para GEOLOGICAL SAMPLES
Resumo:
Characterization of Platinum Group Elements (PGE) has been applied to earth, space and environmental sciences. However, all these applications are based on a basic prerequisite, i.e. their concentration or ratio in the research objects can be accurately and precisely determined. In fact, development in these related studies is a great challenge to the analytical chemistry of the PGE because their content in the geological sample (non-mineralized) is often extremely low, range from ppt (10~(-12)g/g) to ppt (10~(-9)g/g). Their distribution is highly heterogeneous, usually concentrating in single particle or phase. Therefore, the accurate determination of these elements remains a problem in analytical chemistry and it obstructs the research on geochemistry of PGE. A great effort has been made in scientific community to reliable determining of very low amounts of PGE, which has been focused on to reduce the level of background in used reagents and to solve probable heterogeneity of PGE in samples. Undoubtedly, the fire-assay method is one of the best ways for solving the heterogeneity, as a large amount of sample weight (10-50g) can be hold. This page is mainly aimed at development of the methodology on separation, concentration and determination of the ultra-trace PGE in the rock and peat samples, and then they are applied to study the trace of PGE in ophiolite suite, in Kudi, West Kunlun and Tunguska explosion in 1908. The achievements of the study are summarized as follows: 1. A PGE lab is established in the Laboratory of Lithosphere Tectonic Evolution, IGG, CAS. 2. A modified method of determination of PGE in geological samples using NiS Fire-Assay with inductively coupled plasma-mass spectrometry (ICP-MS) is set up. The technical improvements are made as following: (1) investigating the level of background in used reagents, and finding the contents of Au, Pt and Pd in carbonyl nickel powder are 30, 0.6 and 0.6ng/g, respectively and 0.35, 7.5 and 6.4ng, respectively in other flux, and the contents of Ru, Rh, Os in whole reagents used are very low (below or near the detection limits of ICP-MS); (2) measuring the recoveries of PGE using different collector (Ni+S) and finding 1.5g of carbonyl nickel is effective for recovering the PGE for 15g samples (recoveries are more than 90%), reducing the inherent blank value due to impurities reagents; (3) direct dissolving nickel button in Teflon bomb and using Te-precipitation, so reducing the loss of PGE during preconcentration process and improving the recoveries of PGE (above 60% for Os and 93.6-106.3% for other PGE, using 2g carbonyl nickel); (4) simplifying the procedure of analyzing Osmium; (5)method detection limits are 8.6, 4.8, 43, 2.4, 82pg/g for 15g sample size ofRu, Rh, Pd, Ir, Pt, respectively. 3. An analytical method is set up to determine the content of ultra-trace PGE in peat samples. The method detection limits are 0.06, 0.1, 0.001, 0.001 and 0.002ng/mL for Ru, Rh, Pd, Ir and Pt, respectively. 4. Distinct anomaly of Pd and Os are firstly found in the peat sampling near the Tunguska explosion site, using the analytical method. 5. Applying the method to the study on the origin of Tunguska explosion and making the following conclusions: (1) these excess elements were likely resulted from the Tunguska Cosmic Body (TCB) explosion of 1908. (2) The Tunguska explosive body was composed of materials (solid components) similar to C1 chondrite, and, most probably, a cometary object, which weighed more than 10~7 tons and had a radius of more than 126 m. 6. The analysis method about ultra-trace PGE in rock samples is successfully used in the study on the characteristic of PGE in Kudi ophiolite suite and the following conclusions are made: (1) The difference of the mantle normalization of PGE patterns between dunite, harzburgite and lherzolite in Kudi indicates that they are residual of multi-stage partial melt of the mantle. Their depletion of Ir at a similar degree probably indicates the existence of an upper mantle depleted Ir. (2) With the evolution of the magma produced by the partial melt of the mantle, strong differentiation has been shown between IPGE and PPGE; and the differentiation from pyroxenite to basalt would have been more and more distinct. (3) The magma forming ophiolite in Kudi probably suffered S-saturation process.
Resumo:
Fonualei is unusual amongst subaerial volcanoes in the Tonga arc because it has erupted dacitic vesicular lavas, tuffs and phreomagmatic deposits for the last 165 years. The total volume of dacite may approach 5 km(3) and overlies basal basaltic andesite and andesite lavas that are constrained to be less than a few millennia in age. All of the products are crystal-poor and formed from relatively low-viscosity magmas inferred to have had temperatures of 1100-1000 degrees C, 2-4 wt % H2O and oxygen fugacities 1-2 log units above the quartz-fayalite-magnetite buffer. Major and trace element data, along with Sr-Nd-Pb and U-Th-Ra isotope data, are used to assess competing models for the origin of the dacites. Positive correlations between Sc and Zr and Sr rule out evolution of the within-dacite compositional array by closed-system crystal fractionation of a single magma batch. An origin by partial melting of lower crustal amphibolites cannot reproduce these data trends or, arguably, any of the dacites either. Instead, we develop a model in which the dacites reflect mixing between two dacitic magmas, each the product of fractional crystallization of basaltic andesite magmas formed by different degrees of partial melting. Mixing was efficient because the two magmas had similar temperatures and viscosities. This is inferred to have occurred at shallow (2-6 km) depths beneath the volcano. U-Th-Ra disequilibria in the basaltic andesite and andesite indicate that the parental magmas had fluids added to their mantle source regions less than 8 kyr ago and that fractionation to the dacitic compositions took less than a few millennia. The 165 year eruption period for the dacites implies that mixing occurred on a similar timescale, possibly during ascent in conduits. The composition of the dacites renders them unsuitable candidates as contributors to average continental crust.
Resumo:
Günter Strauss is Ph.D. in geology from the University of Munich in 1965. He is a German living by long time in Spain. Naw he is a SAPEC High Advisser His doctoral thesis, submitted in 1965, with the title "About the Geology of the Province of pyrite Southwest of the Iberian Peninsula and its oil fields, especially in the pyrite mine Louzal - Portugal" Systematized the term" Iberian Pyrite Belt ", called for the deposits of iron ore cuprífera, rich in sulfur and other metallic minerals, which occurs between the rivers Sado and Guadalquivir, where they settled several mining complexes, of Louzal, Rio Tinto, through Castro Verde, Santo Domingo and Tharsis. Local mining tradition with an ancient where today seeks to preserve the legacy and memory of mining through measures to enhance equity. The result of work carried out Louzal then formed the basis of geological and documentary collection that has survived and has been proposed for cultural units under the activities of the mining museum Louzal. The richness and importance of this collection, consisting of several hundred documents, geological samples classified, minerals and cartography, comes from its presence Situ"In its state of preservation, that despite the various threats it is still within reach of their preservation, and the relative rarity of such collections, with the units of mining production. This communication aims to reveal the contribution of Mr Strauss for the formation of this collection and submit his proposal for cultural units, with the hope that those responsible for safeguarding them understand the need for its preservation and dissemination. So discuss the scientific and professional way Günter Strauss, a geologic formation of the estate of Mines Louzal, and the draft musealization proposition.
Resumo:
Tests are described showing the results obtained for the determination of REE and the trace elements Rb, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th and U with ICP-MS methodology for nine basaltic reference materials, and thirteen basalts and amphibolites from the mafic-ultramafic Niquelandia Complex, central Brazil. Sample decomposition for the reference materials was performed by microwave oven digestion (HF and HNO(3), 100 mg of sample), and that for the Niquelandia samples also by Parr bomb treatment (5 days at 200 degrees C, 40 mg of sample). Results for the reference materials were similar to published values, thus showing that the microwave technique can be used with confidence for basaltic rocks. No fluoride precipitates were observed in the microwave-digested solutions. Total recovery of elements, including Zr and Hf, was obtained for the Niquelandia samples, with the exception of an amphibolite. For this latter sample, the Parr method achieved a total digestion, but not so the microwave decomposition; losses, however, were observed only for Zr and Hf, indicating difficulty in dissolving Zr-bearing minerals by microwave acid attack.
Resumo:
The technique of isotope dilution has been extensively utilized for determining the content of trace elements in geological samples; it has been especially useful for the determination of 238U and 234U contents in crustal materials with measurements made by alpha spectrometry. 232U-228Th has usually been used as diluent (spike) during the application of this analytical technique. More recently, 236U and 229Th have been used. Some methodological problems concerning the utilization of these spikes are presented with examples of experimental data obtained in analyses of groundwater and borehole spoil samples from Morro do Ferro, Pocos de Caldas (MG). -from English summary
Resumo:
ZusammenfassungSchwerpunkt dieser Arbeit war die Verfahrensentwicklung zur Ultraspurenbestimmung der Platingruppenelemente (PGE) in Umwelt- und geologischen Proben unter Verwendung der massenspektrometrischen Isotopenverdünnungsanalyse mit anschließender Bestimmung an einem Quadrupol ICP-MS (ICP-QMSIVA). Geeignete Separationstechniken in der Probenaufbereitung, um die PGE von der Matrix der untersuchten Proben zu trennen, stellten eine richtige und präzise Bestimmung der Ultraspuren an einem Quadrupol ICP-MS sicher.Das Verfahren konnte anhand von geologischen Referenzmaterialien aus Kanada sichergestellt werden. Gerade die Wiederholungsbestimmungen der verschiedenen Referenzmaterialien unter Verwendung des ICP-QMSIVA Verfahrens sind beispiellos und in dieser Form noch nicht in der Literatur beschrieben. Durch systematische Messungen konnten Richtigkeit und Präzision des Verfahrens bestätigt werden und die Inhomogenität des Referenzmaterials UMT-1 bezüglich Pt bewiesen werden. Das in dieser Arbeit entwickelte Verfahren zur Ultraspurenbestimmung der PGE mit ICP-QMSIVA wurde im Rahmen des Projektes 'Production and certification of a road dust reference material for platinum, palladium and rhodium (PGEs) in automative catalytic converters (PACEPAC)' der Europäischen Union zur Zertifizierung von zwei Referenzmaterialien für Umweltproben eingesetzt. Hierbei wurde bei der Zertifizierung ('intercomparison round') eine sehr gute Übereinstimmung der Ergebnisse mit dem gewichteten Mittelwert der Ergebnisse für Pd und Pt mit den übrigen teilnehmenden Laboratorien festgestellt. Die mit der hier entwickelten Methode erhaltenen Ergebnisse wurden ohne Ausnahme für alle gemessenen Elemente zur Zertifizierung herangezogen. Damit leistete die vorliegende Arbeit einen erheblichen Beitrag zum erfolgreichen Abschluß dieses Projekts. Den Erwartungen hinsichtlich Richtigkeit und Reproduzierbarkeit des entwickelten Verfahrens wurde somit voll entsprochen. Erneut konnte die große Bedeutung der Isotopenverdünnungstechnik für die Zertifizierung von Referenzmaterialien aufgezeigt werden, da mit dieser Technik bei sachgerechtem Einsatz Ergebnisse hoher Richtigkeit erzielt werden. Durch vergleichende Messungen mit der NiS-Dokimasie und NAA, die in einer Kooperation mit dem Kernchemischen Institut der Universität Mainz durchgeführt wurden, und dem hier verwendeten Verfahren, konnten übereinstimmende Daten, hinsichtlich der Abnahme der Konzentrationen von Pd und Pt in Abhängigkeit von der Entfernung zu einer Autobahn, erzielt werden. Diese Arbeit und die Forschungsergebnisse, die mit der anerkannten NAA erzielt wurden, zeigen, daß die PGE durch Katalysatoren von Automobilen überwiegend metallisch emittiert werden. Der anthropogene Eintrag der PGE in die Umwelt kann mit dem ICP-QMSIVA Verfahren weiterhin sehr gut verfolgt werden.
Resumo:
The mechanisms of Ar release from K-feldspar samples in laboratory experiments and during their geological history are assessed here. Modern petrology clearly established that the chemical and isotopic record of minerals is normally dominated by aqueous recrystallization. The laboratory critique is trickier, which explains why so many conflicting approaches have been able to survive long past their expiration date. Current models are evaluated for self-consistency; especially Arrhenian non-linearity leads to paradoxes. The models’ testable geological predictions suggest that temperature-based downslope extrapolations often overestimate observed geological Ar mobility substantially. An updated interpretation is based on the unrelatedness of geological behaviour to laboratory experiments. The isotopic record of K-feldspar in geological samples is not a unique function of temperature, as recrystallisation promoted by aqueous fluids is the predominant mechanism controlling isotope transport. K-feldspar should therefore be viewed as a hygrochronometer. Laboratory degassing proceeds from structural rearrangements and phase transitions such as are observed in situ at high temperature in Na and Pb feldspars. These effects violate the mathematics of an inert Fick’s Law matrix and preclude downslope extrapolation. The similar upward-concave, non-linear shapes of Arrhenius trajectories of many silicates, hydrous and anhydrous, are likely common manifestations of structural rearrangements in silicate structures.
Resumo:
An improved procedure for lithium isotope analysis using Li3PO4 as the ion source has been investigated for application to geological samples. The 7Li/6Li ratio is measured using double rhenium filament thermal ionization mass spectrometry in which isotopic fractionation is minimized at high temperatures. The method produces a stable, high intensity Li+ ion beam that allows measurement of nanogram quantities of lithium. This results in a reduction in sample size of up to 1000 times relative to that required for the established Li2BO2+ method while maintaining a comparable precision of better than 1? (1 sigma). Replicate analyses of the NBS L-SVEC Li2CO3 standard yielded a mean value of 12.1047+/-0.0043 (n=21), which is close to the reported absolute value of 12.02+/-0.03. Intercalibration with a wide range of geological samples shows excellent agreement between the Li3PO4 and Li2BO2+ techniques. Replicate analyses of seawater and a fresh submarine basalt display high precision results that agree with previous measurements. Taking advantage of the high ionization efficiency of the phosphate ion source, we have made the first measurements of the lithium concentration (by isotope dilution) and isotopic composition of calcareous foraminiferal tests and other marine carbonates. Preliminary results indicate that substantial lithium exchange occurs between carbonate sediments and their interstitial waters. In addition, a possible link between lithium paleoceanography and paleoclimate during the last 1000 ky may be derived from planktonic foraminiferal tests. This highly sensitive technique can be applied in the examination of low lithium reservoirs and thereby provide insight into some fundamental aspects of lithium geochemistry.
Resumo:
The purpose of the cruise was to map the manganese rich pavements of the Blake Plateau area which had been extensively investigated by ships of the Woods Hole Oceanographic Institution since 1956. From August until September 1965, 112 sites were sampled from R/V Gosnold on a joint USGS-WHOI expedition. At most of the stations on the Blake pavement, large slabs of manganese were recovered along with phosphate rich nodules.
Resumo:
New high-precision niobium (Nb) and tantalum (Ta) concentration data are presented for early Archaean metabasalts, metabasaltic komatiites and their erosion products (mafic metapelites) from SW Greenland and the Acasta gneiss complex, Canada. Individual datasets consistently show sub-chondritic Nb/Ta ratios averaging 15.1+/-11.6. This finding is discussed with regard to two competing models for the solution of the Nb-deficit that characterises the accessible Earth. Firstly, we test whether Nb could have sequestered into the core due to its slightly siderophile (or chalcophile) character under very reducing conditions, as recently proposed from experimental evidence. We demonstrate that troilite inclusions of the Canyon Diablo iron meteorite have Nb and V concentrations in excess of typical chondrites but that the metal phase of the Grant, Toluca and Canyon Diablo iron meteorites do not have significant concentrations of these lithophile elements. We find that if the entire accessible Earth Nb-deficit were explained by Nb in the core, only ca. 17% of the mantle could be depleted and that by 3.7 Ga, continental crust would have already achieved ca. 50% of its present mass. Nb/Ta systematics of late Archaean metabasalts compiled from the literature would further require that by 2.5 Ga, 90% of the present mass of continental crust was already in existence. As an alternative to this explanation, we propose that the average Nb/Ta ratio (15.1+/-11.6) of Earth's oldest mafic rocks is a valid approximation for bulk silicate Earth. This would require that ca. 13% of the terrestrial Nb resided in the Ta-free core. Since the partitioning of Nb between silicate and metal melts depends largely on oxygen fugacity and pressure, this finding could mean that metal/silicate segregation did not occur at the base of a deep magma ocean or that the early mantle was slightly less reducing than generally assumed. A bulk silicate Earth Nb/Ta ratio of 15.1 allows for depletion of up to 40% of the total mantle. This could indicate that in addition to the upper mantle, a portion of the lower mantle is depleted also, or if only the upper mantle were depleted, an additional hidden high Nb/Ta reservoir must exist. Comparison of Nb/Ta systematics between early and late Archaean metabasalts supports the latter idea and indicates deeply subducted high Nb/Ta eclogite slabs could reside in the mantle transition zone or the lower mantle. Accumulation of such slabs appears to have commenced between 2.5 and 2.0 Ga. Regardless of these complexities of terrestrial Nb/Ta systematics, it is shown that the depleted mantle Nb/Th ratio is a very robust proxy for the amount of extracted continental crust, because the temporal evolution of this ratio is dominated by Th-loss to the continents and not Nb-retention in the mantle. We present a new parameterisation of the continental crust volume versus age curve that specifically explores the possibility of lithophile element loss to the core and storage of eclogite slabs in the transition zone. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We present data for the rare earth elements and yttrium (REY) in the National Research Council of Canada natural river water reference material SLRS-4 and 19 natural river waters from small catchments in South-East Queensland, Australia, by a direct ICP-MS method. The 0.22 mu m filtered river water samples show a large degree of variability in both the REY concentration, e.g., La varies from 13 to 1157 ppt, and shape of the alluvial-sediment-normalised REY patterns with different samples displaying light, middle or heavy rare earth enrichment. In addition, a spatial study was undertaken along the freshwater section of Beerburrum Creek, which demonstrates that similar to 75% of the total REYs in this waterway are removed prior to estuarine mixing without evidence of fractionation.
Resumo:
A direct quadrupole ICP-MS technique has been developed for the analysis of the rare earth elements and yttrium in natural waters. The method has been validated by comparison of the results obtained for the river water reference material SLRS-4 with literature values. The detection limit of the technique was investigated by analysis of serial dilutions of SLRS-4 and revealed that single elements can be quantified at single-digit fg/g concentrations. A coherent normalised rare earth pattern was retained at concentrations two orders of magnitude below natural concentrations for SLRS-4, demonstrating the excellent inter-element accuracy and precision of the method. The technique was applied to the analysis of a diluted mid-salinity estuarine sample, which also displayed a coherent normalised rare earth element pattern, yielding the expected distinctive marine characteristics. (c) 2006 Published by Elsevier Ltd.
Resumo:
The cores and dredges described in this report were taken on the COCOTOW Expedition in September until December 1974 by the Scripps Institution of Oceanography from the R/V Spencer F. Baird. A total of 75 cores and dredges were recovered and are available at Scripps for sampling and study.
Resumo:
Marine microorganisms adapt to their habitat by structural modification of their membrane lipids. This concept is the basis of numerous molecular proxies used for paleoenvironmental reconstruction. Archaeal tetraether lipids from ubiquitous marine planktonic archaea are particularly abundant, well preserved in the sedimentary record and utilized in several molecular proxies. We here introduce the direct, extraction-free analysis of these compounds in intact sediment core sections using laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LDI FTICR-MS can detect the target lipids in single sub-mm sized spots on sediment sections, equivalent to a sample mass in the nanogram range, and could thus pave the way for biomarker-based reconstruction of past environments and ecosystems at subannual to decadal resolution. We demonstrate that ratios of selected archaeal tetraethers acquired by LDI FTICR-MS are highly correlated with values obtained by conventional LC/MS protocols. The ratio of the major archaeal lipids, caldarchaeol and crenarchaeol, analyzed in a 6.2-cm intact section of Mediterranean sapropel S1 at 250-µm resolution (~4-year temporal resolution), provides an unprecedented view of the fine-scale patchiness of sedimentary biomarker distributions and the processes involved in proxy signal formation. Temporal variations of this lipid ratio indicate a strong influence of the 200-yr de Vries solar cycle on reconstructed sea surface temperatures with possible amplitudes of several degrees, and suggest signal amplification by a complex interplay of ecological and hydrological factors. Laser-based biomarker analysis of geological samples has the potential to revolutionize molecular stratigraphic studies of paleoenvironments.
Resumo:
319 p.