268 resultados para GARCH-M
Resumo:
Un conjunto de modelos GARCH multivariados son estimados y su validez empírica comparada a partir del cálculo de la medida VaR, para los retornos diarios de la tasa de cambio nominal del peso colombiano con respecto al dólar americano, euro, libra esterlina y yen japonés en el periodo 1999–2005. La comparación de las estimaciones para la matriz de covarianza condicional y los resultados obtenidos para la proporción de fallo y el contraste de cuantil dinámico de Engle y Manganelli (2004) presentan evidencia a favor del modelo de correlación condicional constante.
Resumo:
En este trabajo se estudia el comportamiento de los retornos de los tres principales índices bursátiles de Colombia: el IBB de la Bolsa de Bogotá, el IBOMED de la Bolsa de Medellin, y el IGBC de Bolsa de Valores de Colombia. A través de un modelo STAR GARCH se identifican dos estados o regiones extremos; mientras en el primero los rendimientos de los índices son, en términos absolutos, bajos y los procesos son estacionarios, en el segundo se tienen grandes pérdidas o ganancias, donde los efectos de los choques son permanentes. Aunque en cada uno de los regímenes el efecto del día de la semana es diferente, los resultados indican que para los tres índices existe un efecto del día de la semana en la media, y un efecto del día en la varianza para la Bolsa de Bogotá y Bolsa de Valores de Colombia. Los resultados contradicen la hipótesis de un mercado de acciones efciente en información.
Resumo:
This study analyzes the issue of American option valuation when the underlying exhibits a GARCH-type volatility process. We propose the usage of Rubinstein's Edgeworth binomial tree (EBT) in contrast to simulation-based methods being considered in previous studies. The EBT-based valuation approach makes an implied calibration of the pricing model feasible. By empirically analyzing the pricing performance of American index and equity options, we illustrate the superiority of the proposed approach.
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.
Resumo:
This paper considers the effect of GARCH errors on the tests proposed byPerron (1997) for a unit root in the presence of a structural break. We assessthe impact of degeneracy and integratedness of the conditional varianceindividually and find that, apart from in the limit, the testing procedure isinsensitive to the degree of degeneracy but does exhibit an increasingover-sizing as the process becomes more integrated. When we consider the GARCHspecifications that we are likely to encounter in empirical research, we findthat the Perron tests are reasonably robust to the presence of GARCH and donot suffer from severe over-or under-rejection of a correct null hypothesis.
Resumo:
It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.
Resumo:
This paper reviews nine software packages with particular reference to their GARCH model estimation accuracy when judged against a respected benchmark. We consider the numerical consistency of GARCH and EGARCH estimation and forecasting. Our results have a number of implications for published research and future software development. Finally, we argue that the establishment of benchmarks for other standard non-linear models is long overdue.
Resumo:
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out-of-sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series.
Resumo:
This paper considers the effect of using a GARCH filter on the properties of the BDS test statistic as well as a number of other issues relating to the application of the test. It is found that, for certain values of the user-adjustable parameters, the finite sample distribution of the test is far-removed from asymptotic normality. In particular, when data generated from some completely different model class are filtered through a GARCH model, the frequency of rejection of iid falls, often substantially. The implication of this result is that it might be inappropriate to use non-rejection of iid of the standardised residuals of a GARCH model as evidence that the GARCH model ‘fits’ the data.
Resumo:
The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.