495 resultados para GALAXIES: STARBURST
Resumo:
Mergers and interacting galaxies are pivotal to the evolution of galaxies in the universe. They are the sites of prodigious star formation and key to understanding the starburst processes: the physical and chemical properties and the dynamics of the molecular gas. ULIRGs or Ultraluminous Infrared Galaxies are a result of many of these mergers. They host extreme starbursts, AGNs, and mergers. They are the perfect laboratory to probe the connection between starbursts, black hole accretion and mergers and to further our understanding of star formation and merging.
NGC 6240 and Arp 220 can be considered the founding members of this very active class of objects. They are in different stages of merging and hence are excellent case studies to further our understanding about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with CARMA C and B Configurations (2" and 0.5 - 0.8"). Multi-band imaging allows excitation analysis of HCN, HCO+, HNC, and CS along with CO transitions to constrain the properties of the gas. Our dataset is unique in that we have observed these lines at similar resolutions and high sensitivity which can be used to derive line ratios of faint high excitation lines.
Arp 220 has not had confirmed X-ray AGN detections for either nuclei. However, our observations indicate HCN/HNC ratios consistent with the chemistry of X-ray Dominated Regions (XDRs) -- a likely symptom of AGN. We calculated the molecular Hydrogen densities using each of the molecular species and conclude that assuming abundances of HNC and HCO+ similar to those in galactic sources are incorrect in the case of ULIRGs. The physical conditions in the dense molecular gas in ULIRGs alter these abundances. The derived H2 volume densities are ~ 5 x 104 cm-3 in both Arp 220 nuclei and ~ 104 cm-3 in NGC 6240.
Resumo:
Ten detections and five tentative detections of hydrogen isocyanide (HNC) J=1-0 emission are reported from a survey including sixteen galaxies. Full maps are presented for the nuclear regions of NGC 253 and IC 342, partial maps for Maffei 2, M 82, and M 83. Toward IC 342, the HNC and HCO+ distributions differ from those observed in 12CO, 13CO, HCN, CS, and NH3. This is likely a consequence of the density structure. Relative HNC abundances are with 10(-10)-10(-9) much smaller than those measured in nearby dark clouds and appear to be slightly smaller than those in regions of massive star formation of the Galactic disk. This is consistent with the presence of dense warm gas or a frequent occurrence of shocks in the nuclear regions of the galaxies observed. As in prominent Galactic star forming regions, 3 mm HNC line emission tends to be weaker than the corresponding emission from HCN and HCO+. Toward Arp 220, however, the 3 mm HNC/HCN line intensity ratio is > 1. HNC/HCO+, HNC/CO, and HNC to 20 cm radio continuum luminosity ratios are also particularly large. A possible interpretation is the presence of cool quiescent gas outside the central region which contains the starburst. In the other ultraluminous galaxy observed, NGC 6240, X(HNC) 10 smaller than in Arp 220, demonstrating that the molecular composition in ultraluminous galaxies is far from being uniform.
Resumo:
Lo scopo di questo lavoro di tesi è indagare le capacità di ALMA di osservare il continuo e le righe molecolari di emissione di HCN, HCO+ e HNC, in galassie lensate ad alto z, nelle prime fasi della loro formazione. Per farlo vengono utilizzate osservazioni ALMA di righe di emissione molecolare, relative a dati pubblici di Ciclo 0. Queste osservazioni vengono utilizzate per simulare in modo realistico l’emissione da parte di galassie ad alto z e la risposta osservativa del telescopio, assumendo diverse possibili geometrie di lensing. Inoltre le recenti osservazioni ALMA sono state utilizzate per aggiornare le relazioni già esistenti tra la luminosità FIR e la luminosità delle righe molecolari. Queste recenti osservazioni con maggiore sensibilità e risoluzione angolare, sembrano essere in buon accordo con le precedenti osservazioni. Per realizzare questo progetto di tesi, sono stati scaricati dall’archivio ALMA i dati non calibrati relativi a due sorgenti ben studiate: NGC1614, rappresentativa delle galassie di tipo starburst ed IRAS 20551-4250, un AGN oscurato. Il processo di calibrazione è stato ripetuto per esaminare le proprietà dei cubi di dati utilizzando il pacchetto Common Astronomy Software Applications (CASA). Le righe spettrali osservate e l’emissione del continuo sono state successivamente estrapolate ad alto z riscalando adeguatamente le distanze, le dimensioni delle sorgenti e le frequenze di emissione. In seguito è stato applicato un modello di lensing gravitazionale basato su quello di Lapi et al. (2012). Sono state considerate diverse configurazioni tra lente e sorgente per ottenere diverse geometrie delle immagini e diversi fattori di amplificazione. Infine stato utilizzato il software CASA per simulare le osservazioni ALMA in modo da verificare le capacità osservative del telescopio al variare della geometria del sistema. Per ogni riga molecolare e per l’emissione del continuo sono state determinate la sensibilit e la risoluzione che possono essere raggiunte con le osservazioni ALMA e sono state analizzate alcune strategie osservative per effettuare survey di righe spettrali in oggetti lensati. Inoltre stata analizzata la possibilit di caratterizzare oggetti starburst ed AGN dai rapporti tra le righe di emissione delle molecole traccianti di alta densit. Le prestazioni di ALMA consentiranno di distinguere e stimare i contributi relativi di SB ed AGN in galassie lensate a z > 2.5, quindi vicine alla loro presunta epoca di formazione (Lapi et al. 2010), in meno di 5 minuti di osservazione per qualsiasi fattore di magnificazione. Nel presente lavoro sono state inoltre discusse alcune strategie osservative per condurre survey o followup per osservare le righe di HCN(4-3), HCO+(4-3) e HNC(4-3) in galassie lensate a redshift 2.5 < z < 3, dimostrando che sono possibili per campioni statisticamente significativi in tempi relativamente brevi.
Resumo:
We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M_*> 10^10 M_☉) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z≲2, cSFGs present SFR = 100-200 M_☉ yr^–1, yet their specific star formation rates (sSFR ~ 10^–9 yr^–1) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ~ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z≲2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z≳2) path in which larger SFGs form extended QGs without passing through a compact state.
Resumo:
Star formation occurs when the gas (mostly atomic hydrogen; H I) in a galaxy becomes disturbed, forming regions of high density gas, which then collapses to form stars. In dwarf galaxies it is still uncertain which processes contribute to star formation and how much they contribute to star formation. Blue compact dwarf (BCD) galaxies are low mass, low shear, gas rich galaxies that have high star formation rates when compared to other dwarf galaxies. What triggers the dense burst of star formation in BCDs but not other dwarfs is not well understood. It is often suggested that BCDs may have their starburst triggered by gravitational interactions with other galaxies, dwarf-dwarf galaxy mergers, or consumption of intergalactic gas. However, there are BCDs that appear isolated with respect to other galaxies, making an external disturbance unlikely.^ Here, I study six apparently isolated BCDs from the LITTLE THINGS sample in an attempt to understand what has triggered their burst of star formation. LITTLE THINGS is an H I survey of 41 dwarf galaxies. Each galaxy has high angular and velocity resolution H I data from the Very Large Array (VLA) telescope and ancillary stellar data. I use these data to study the detailed morphology and kinematics of each galaxy, looking for signatures of starburst triggers. In addition to the VLA data, I have collected Green Bank Telescope data for the six BCDs. These high sensitivity, low resolution data are used to search the surrounding area of each galaxy for extended emission and possible nearby companion galaxies.^ The VLA data show evidence that each BCD has likely experienced some form of external disturbance despite their apparent isolation. These external disturbances potentially seen in the sample include: ongoing/advanced dwarf-dwarf mergers, an interaction with an unknown external object, and external gas consumption. The GBT data result in no nearby, separate H I companions at the sensitivity of the data. These data therefore suggest that even though these BCDs appear isolated, they have not been evolving in isolation. It is possible that these external disturbances may have triggered the starbursts that defines them as BCDs.^
Resumo:
We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K
Resumo:
Aims. Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (z< 1.5) LGRBs seem to prefer particular types of environment. Our aim is to study the host galaxies of a complete sample of bright LGRBs to investigate the effect of the environment on GRB formation. Methods. We studied host galaxy spectra of the Swift/BAT6 complete sample of 14 z< 1 bright LGRBs. We used the detected nebular emission lines to measure the dust extinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M_*. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M_* relations) are compared to samples of field star-forming galaxies. Results. We find that LGRB hosts at z< 1 have on average lower SFRs than if they were direct star formation tracers. By directly comparing metallicity distributions of LGRB hosts and star-forming galaxies, we find a good match between the two populations up to 12 +log (O/H)~8.4−8.5, after which the paucity of metal-rich LGRB hosts becomes apparent. The LGRB host galaxies of our complete sample are consistent with the mass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 z< 1 sample with respect to that of a field star-forming population. Given that the SFRs are low on average, the latter is ascribed to low stellar masses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies.
Resumo:
Afin d’étudier l’historique de formation stellaire et d’enrichissement chimique des galaxies spirales barrées, j’ai simulé l’évolution de 27 galaxies spirales, barrées et non barrées, de diverses masses stellaires et fractions de gaz. Alors que les galaxies non barrées présentent une évolution lente et continue sur les deux milliards d’années que durent nos simulations, les galaxies barrées ont une évolution bien plus explosive, et ce particulièrement pour les galaxies les plus massives. Dans un premier temps, je montre que la présence de la barre entraine un flot important de gaz des régions périphériques vers le centre de la galaxie barrée, causant un sursaut de formation stellaire et une croissance importante de l’abondance chimique centrale, et que l’amplitude et la vitesse à laquelle ce sursaut arrive augmentent avec la masse de la galaxie. Cet épisode de sursaut stellaire entraine alors une diminution importante de la masse de gaz, entrainant à son tour une décroissance de la formation stellaire et une stagnation de l’enrichissement chimique pour le reste de l’évolution de la galaxie. Dans un deuxième temps, je montre qu’à cause de la dynamique en deux périodes très différentes des galaxies barrées, deux galaxies de masse très semblable peuvent avoir des taux de formation stellaire et des métallicités complètement différentes en fonction de leur stade évolutif, stade qu’on ne peut déterminer aisément. Cette difficulté est tout aussi importante lorsqu’on compare le coeur des galaxies barrées et non barrées entre elles, étant donné que des coeurs comparables sont situés dans les galaxies très différentes, et que des galaxies semblables ont des coeurs très différents.
Resumo:
We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm dust continuum maps of six massive, compact, dusty star-forming galaxies at z ~ 2.5. These galaxies are selected for their small rest-frame optical sizes (r_e,F160W ~ 1.6 kpc) and high stellar mass densities that suggest that they are direct progenitors of compact quiescent galaxies at z ~ 2. The deep observations yield high far-infrared (FIR) luminosities of L_IR = 10^12.3-12.8 L_⨀ and star formation rates (SFRs) of SFR = 200–700 M_⊙ yr^−1, consistent with those of typical star-forming "main sequence" galaxies. The high spatial resolution (FWHM ~ 0 12–0 18) ALMA and Hubble Space Telescope photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR–SFR overwhelmingly dominates the bolometric SFR up to r ~ 5 kpc, by a factor of over 100× from the unobscured UV–SFR. Furthermore, the effective radius of the mean SFR profile (r_e,SFR ~ 1 kpc) is ~30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of Δt = ±100 Myr, is a 4×increase of the stellar mass density within the central 1 kpc and a 1.6× decrease of the half-mass–radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.
Resumo:
The light distribution in the disks of many galaxies is ‘lopsided’ with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed.
Resumo:
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer/Infrared Array Camera (IRAC)4.5-mu m band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller dis scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric.
Resumo:
Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure-supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depending on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on an orbit with high angular momentum. Systems with these hybrid properties have recently been observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitative agreement with these observations and demonstrate that even mergers composed of non rotating, pressure-supported progenitor galaxies can produce early-type galaxies with significant rotation at large radii.
Resumo:
We present the results on the distribution and kinematics of HI gas with higher sensitivity and in one case of higher spectral resolution as well than reported earlier, of three irregular galaxies CGCG 097073, 097079 and 097087 (UGC 06697) in the cluster Abell 1367. These galaxies are known to exhibit long (50 - 75 kpc) tails of radio continuum and optical emission lines (H alpha) pointing away from the cluster centre and arcs of starformation on the opposite sides of the tails, These features as well as the HI properties, with two of the galaxies (CGCG 097073 and 097079) exhibiting sharper gradients in HI intensity on the side of the tails, are consistent with the HI gas being affected by the ram pressure of the intracluster medium. However the HI emission in all the three galaxies extends to much smaller distances than the radio-continuum and H alpha tails, and are possibly still bound to the parent galaxies. Approximately 20 - 30 per cent of the HI mass is seen to accumulate on the downstream side due to the effects of ram pressure.