912 resultados para Fuzzy sliding mode control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho estuda a técnica de acionamento vetorial aplicado ao motor de indução trifásico (MIT), utilizando como estratégia de controle a combinação de controle fuzzy com controladores chaveados do tipo modo deslizante, em uma configuração aqui denominada de Controlador Fuzzy Modo Deslizante (FSMC – Do inglês: Fuzzy Sliding Mode Control). Um modelo dinâmico do MIT é desenvolvido em variáveis ‘d-q’ o que conduziu a um modelo eletromecânico em espaço de estados que exibe fortes não linearidades. A este modelo são aplicadas as condições de controle vetorial que permitem desacoplar o torque e o fluxo no MIT, de maneira que o seu comportamento dinâmico se assemelha àquele verificado em uma máquina de corrente contínua. Nesta condição, são implementados controladores do tipo proporcional e integral (PI) às malhas de controle de corrente e velocidade do motor, e são realizadas simulações computacionais para o rastreamento de velocidade e perturbação de carga, o que levam a resultados satisfatórios do ponto de vista dinâmico. Visando investigar o desempenho das estratégias não lineares nesta abordagem é apresentado o estudo da técnica de controle a estrutura chaveada do tipo modo deslizante. Um controlador modo deslizante convencional é implementado, onde se verifica que, a despeito do excelente desempenho dinâmico a ocorrência do fenômeno do “chettering” inviabiliza a aplicação desta estratégia em testes reais. Assim, é proposta a estratégia de controle FSMC, buscando associar o bom resultado dinâmico obtido com o controlador modo deslizante e a supressão do fenômeno do chettering, o que se atinge pela definição de uma camada de chaveamento do tipo Fuzzy. O controlador FSMC proposto é submetido aos mesmos testes computacionais que o controlador PI, conduzindo a resultados superiores a este último no transitório da resposta dinâmica, porém com a presença de erro em regime permanente. Para atacar este problema é implementada uma combinação Fuzzy das estratégias FSMC com a ação de controle PI, onde o primeiro busca atuar em regiões afastadas da superfície de chaveamento e o segundo busca introduzir o efeito da ação integral próximo à superfície. Os resultados obtidos mostram a viabilidade da estratégia em acionamento de velocidade variável que exigem elevado desempenho dinâmico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of a solar photovoltaic (PV) panel simulator can be a valued tool for the design and evaluation of the several components of a photovoltaic system. This simulator is based on power electronic converter controlled in such a way that will behave as a PV panel. Thus, in this paper a PV panel simulator based on a two quadrant DC/DC power converter is proposed. This topology will allow to achieve fast responses, like suddenly changes in the irradiation and temperature. To control the power converter it will be used a fast and robust sliding mode controller. Therefore, with the proposed system I-V curve simulation of a PV panel is obtained. Experimental results from a laboratory prototype are presented in order to confirm the theoretical operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Direct Power Control of Three-Phase Matrix Converters (DPC-MC) operating as Unified Power Flow Controllers (UPFC). Since matrix converters allow direct AC/AC power conversion without intermediate energy storage link, the resulting UPFC has reduced volume and cost, together with higher reliability. Theoretical principles of DPC-MC method are established based on an UPFC model, together with a new direct power control approach based on sliding mode control techniques. As a result, active and reactive power can be directly controlled by selection of an appropriate switching state of matrix converter. This new direct power control approach associated to matrix converters technology guarantees decoupled active and reactive power control, zero error tracking, fast response times and timely control actions. Simulation results show good performance of the proposed system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a systemic modeling for a PV system integrated into an electric grid. The modeling includes models for a DC-DC boost converter and a DC-AC two-level inverter. Classical or fuzzy PI controllers with pulse width modulation by space vector modulation associated with sliding mode control is used for controlling the PV system and power factor control is introduced at the output of the system. Comprehensive performance simulation studies are carried out with the modeling of the DC-DC boost converter followed by a two-level power inverter in order to compare the performance with the experimental results obtained during in situ operation with three commercial inverters. Also, studies are carried out to assess the quality of the energy injected into the electric grid in terms of harmonic distortion. Finally, conclusions regarding the integration of the PV system into the electric grid are presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis está enfocada al diseño y validación de controladores robustos que pueden reducir de una manera efectiva las vibraciones structurales producidas por perturbaciones externas tales como terremotos, fuertes vientos o cargas pesadas. Los controladores están diseñados basados en teorías de control tradicionalamente usadas en esta area: Teoría de estabilidad de Lyapunov, control en modo deslizante y control clipped-optimal, una técnica reciente mente introducida : Control Backstepping y una que no había sido usada antes: Quantitative Feedback Theory. La principal contribución al usar las anteriores técnicas, es la solución de problemas de control estructural abiertos tales como dinámicas de actuador, perturbaciones desconocidas, parametros inciertos y acoplamientos dinámicos. Se utilizan estructuras típicas para validar numéricamente los controladores propuestos. Especificamente las estructuras son un edificio de base aislada, una plataforma estructural puente-camión y un puente de 2 tramos, cuya configuración de control es tal que uno o mas problemas abiertos están presentes. Se utilizan tres prototipos experimentales para implementar los controladores robustos propuestos, con el fin de validar experimentalmente su efectividad y viabilidad. El principal resultado obtenido con la presente tesis es el diseño e implementación de controladores estructurales robustos que resultan efectivos para resolver problemas abiertos en control estructural tales como dinámicas de actuador, parámetros inciertos, acoplamientos dinámicos, limitación de medidas y perturbaciones desconocidas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcontroller-based peak current mode control of a buck converter is investigated. The new solution uses a discrete time controller with digital slope compensation. This is implemented using only a single-chip microcontroller to achieve desirable cycle-by-cycle peak current limiting. The digital controller is implemented as a two-pole, two-zero linear difference equation designed using a continuous time model of the buck converter and a discrete time transform. Subharmonic oscillations are removed with digital slope compensation using a discrete staircase ramp. A 16 W hardware implementation directly compares analog and digital control. Frequency response measurements are taken and it is shown that the crossover frequency and expected phase margin of the digital control system match that of its analog counterpart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new results on the output control of uncertain dynamical systems. The design method uses dynamical compensators to turn the compensated plant into a strictly positive real system, and then chooses the control law-for example, a sliding mode control. This result is compared with another result from the literature which uses static compensators. An example is presented where the control with dynamic compensation works while a static compensation does not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a non-trivial dc-dc power converter and a simple and inexpensive control circuit design, that was simulated using the software PSpice, is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently proposed alternative sliding-mode control technique. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.