993 resultados para Fungicidal activity


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background Particulate systems are well known to be able to deliver drugs with high efficiency and fewer adverse side effects, possibly by endocytosis of the drug carriers. On the other hand, cationic compounds and assemblies exhibit a general antimicrobial action. In this work, cationic nanoparticles built from drug, cationic lipid and polyelectrolytes are shown to be excellent and active carriers of amphotericin B against C. albicans. Results Assemblies of amphotericin B and cationic lipid at extreme drug to lipid molar ratios were wrapped by polyelectrolytes forming cationic nanoparticles of high colloid stability and fungicidal activity against Candida albicans. Experimental strategy involved dynamic light scattering for particle sizing, zeta-potential analysis, colloid stability, determination of AmB aggregation state by optical spectra and determination of activity against Candida albicans in vitro from cfu countings. Conclusion Novel and effective cationic particles delivered amphotericin B to C. albicans in vitro with optimal efficiency seldom achieved from drug, cationic lipid or cationic polyelectrolyte in separate. The multiple assembly of antibiotic, cationic lipid and cationic polyelctrolyte, consecutively nanostructured in each particle produced a strategical and effective attack against the fungus cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of approximate to 20,000 microbial extracts, 12 hits were identified with broadspectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

微波辐射下的化学合成反应具有反应速度快、产率高、选择性好、产物易控制等优点,还可以节约能源。本文采用微波辐射方法降解壳聚糖制备了不同分子量的甲壳低聚糖,并以甲壳低聚糖为原料,在微波辐射下进行硫酸酯化、羧甲基化、希夫碱化、金属配位等反应,合成了多种新型甲壳低聚糖衍生物,并研究其抗氧化和抗菌机理,为甲壳低聚糖及其衍生物的进一步应用奠定理论基础。 研究微波可控性降解反应,制备了不同分子量的甲壳低聚糖,探讨反应介质、氧化剂与壳聚糖配比、辐射功率和辐射时间等因素对降解反应的影响。结果表明:选择不同的反应条件,微波辐射1-10min就可制备出相对分子量在0.3-10万之间不同分子量大小的甲壳低聚糖,且反应产率高、重复性好。研究了氯化钠等电解质对微波降解的影响,通过改变反应时间和微波功率,添加电解质可加速微波场中壳聚糖的降解。 在微波辐射下进行甲壳低聚糖的羧甲基化反应,制备羧甲基低聚糖。在此基础上,不同分子量的低聚糖及羧甲基低聚糖与金属盐溶液在微波场中反应制备甲壳低聚糖基金属衍生物。采用紫外、红外等分析手段对配位基团和配位方式进行了分析。 甲壳低聚糖及其铜、锌配合物首次在微波辐射下进行硫酸酯化修饰,合成新型甲壳低聚糖硫酸酯金属衍生物,产物具有良好的水溶性、硫酸基含量在30%以上。研究了微波促进希夫碱化反应,合成了5种羟丙基甲壳低聚糖希夫碱,并对其结构进行了分析确定。 对上述四类甲壳低聚糖衍生物进行了抗氧化和抗菌活性筛选,结果发现四类衍生物对超氧阴离子自由基和羟自由基均具有较好的清除作用,对几种常见农作物病原菌也具有明显的抑制活性。证明接入的活性基团、金属离子等对其衍生物的生物活性起到一定促进作用,具有加合性和增效性。为今后进一步研究和应用奠定了基础。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to find leading compounds with an excellent fungicidal activity, the tide compound 2-(1,3-dithiolan-2-yl-idene) -1-phenyl-2-(1,2,4-triazol-1-yl) ethanone was synthesized according to the biological isosterism and its structure was confirmed by means of IR, MS, H-1 NMR and elemental analysis. The single crystal structure of the tide compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound exhibits some biological activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of indomethacin (Indo), a cyclo-oxygenase inhibitor, on the monocyte-mediated killing of a low-(Pb265) and a high-(Pb18) virulence strain of Paracoccidioides brasiliensis was examined. The Pb18 strain was not killed by either non-activated or interferon-gamma (IFN-gamma)-activated human monocytes but these cells did show fungicidal activity if pretreated with Indo. In contrast with IFN-gamma tumour necrosis factor-alpha (TNF-alpha) was very effective at stimulating the fungicidal activity of monocytes. While the low-virulence strain, Pb265, could not be killed by monocytes, cells preincubated with IFN-gamma demonstrated fungicidal activity. The killing of this strain was also induced by pretreatment of monocytes with Indo. The results suggest a negative role for prostaglandins, which are synthesized via the cyclo-oxygenase pathway, in the regulation of monocyte-mediated killing of virulent and avirulent strains of P. brasiliensis and that TNF-alpha generation during the fungus-monocyte interaction is more important in the killing of Pb265 than Pb18.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paracoccidioidomycosis, a deep mycosis endemic in Latin America, is a chronic granulomatous disease caused by the fungus Paracoccidioides brasiliensis. Phagocytic cells play a critical role against the fungus and several papers show the effects of activator and suppressive cytokines on macrophage and monocyte functions. However, the studies focusing on polymorphonuclear neutrophils (PMNs) antifungal functions are scarcer. Thus, the objective of the present paper was to assess the capacity of human PMNs to kill virulent P brasiliensis strain in vitro, before and after priming with different cytokines. Moreover, the involvement of oxygen metabolites in this activity was evaluated. Nonactivated cells failed to exhibit antifungal activity. However, when these cells were IFN-gamma, TNF-alpha or GM-CSF activated, a significative fungicidal activity was detected. This process was significantly inhibited when P brasiliensis challenge occurred in presence of catalase (CAT - a scavenger of H2O2) and superoxide dismutase (SOD - a scavenger of superoxide anion). From these results it is concluded that cytokines activation is required for P brasiliensis killing by human PMNs, and that H2O2 and Superoxide anion participate as effectors molecules in this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interleukin-15 is a pro-inflammatory cytokine produced by a wide range of different cell types, especially monocytes and macrophages, in response to infective agents, playing a crucial and modulatory role in innate and adaptive immune response. Infections by intracellular microorganisms such as some bacteria, protozoa and fungi point out the role of IL-15 in the activation of monocytes/macrophages and neutrophils, a process that represents an important defense mechanism in early periods of infection during the development of innate immune response. The aims of the present study were to evaluate the effects of IL-15 on human neutrophil fungicidal activity against a high virulent Paracoccidioides brasiliensis strain ( Pb18) and to verify whether this activity was mediated by oxidative metabolism such as the production of superoxide anion and H2O2 and if it was associated with an alteration of cytokine ( IL-8 and TNF-alpha) levels. Neutrophils from peripheral blood of healthy individuals were incubated in the presence and absence of IL-15 ( 12.5 - 250ng/ml) for 18h, at 37 degrees C, under tension of 5% CO2, then infected with Pb18 for 4h and evaluated for fungicidal activity, production of superoxide anion and H2O2, and quantification of cytokines IL-8 and TNF-a in the supernatant. Preincubation of neutrophils with IL-15 induced a significant increase in the fungicidal activity of such cells in a dose-dependent manner. After activation, there was an increase in the production of superoxide anion and H2O2 by these cells, suggesting participation of such metabolites in fungicidal activity. Catalase inhibits fungicidal activity, confirming the role of H2O2 in fungus killing. However, the levels of TNF-alpha and IL-8 were not modified after incubation with IL-15, which suggests that its role is not mediated by those cytokines. Taken together, results showed that IL-15 had a modulatory effect on human neutrophils infected in vitro with a high virulent strain of P. brasiliensis, which was characterized by an increased fungicidal activity mediated by a dependent mechanism of oxidative metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a deep mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. Macrophage activation by cytokines is the major effector mechanism against this fungus. This work aimed at a better understanding of the interaction between yeast cells-murine peritoneal macrophages and the cytokine signals required for the effective killing of high virulence yeast-form of P. brasiliensis. In addition, the killing effector mechanisms dependent on the generation of reactive oxygen or nitrogen intermediates were investigated. Cell preincubation with IFN-gamma or TNF-alpha, at adequate doses, resulted in effective yeast killing as demonstrated in short-term (4-h) assays. Both, IFN-gamma and TNF-alpha activation were associated with higher levels of H(2)O(2) and NO when compared to nonactivation. Treatment with catalase (CAT), a H(2)O(2) scavenger, and N(G)-monomethyl-L-arginine (L-NMMA), a nitric oxide synthase inhibitor, reverted the killing effect of activated cells. Taken together, these results suggest that both oxygen and L-arginine-nitric oxide pathways play a role in the killing of highly virulent P. brasiliensis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human monocytes activated by recombinant tumor necrosis factor alpha (TNF-alpha) exhibited significant fungicidal activity on the yeast cells of a highly virulent strain of Paracoccidioides brasiliensis. This process was significantly inhibited in the presence of catalase (CAT - a scavenger of H2O2), but not in the presence of superoxide-dismutase (SOD - a scavenger of superoxide anion) or N-G-monomethyl-L- arginine (N-G-MMLA - a nitric oxide inhibitor). Furthermore, there was a direct association between the intracellular killing of the fungus and the production of H2O2 by activated cells. These results strongly suggest a role for H2O2 in the killing of highly virulent strains of P. brasiliensis by TNF-alpha-activated human monocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In paracoccidioidomycosis, a systemic mycosis caused by the fungus Paracoccidioides brasiliensis (Pb), studies have focused on the role of neutrophils that are involved in the primary response to the fungus. Neutrophil functions are regulated by pro- and anti-inflammatory cytokines. Molecular mechanisms involved in this process are not fully understood, but there are strong evidences about the involvement of toll-like receptors (TLRs). We aimed at evaluating TLR2 and TLR4 expression on human neutrophils activated by GM-CSF, IL-15, TNF-alpha or IFNgamma and challenged with a virulent strain of P. brasiliensis (Pb18). Moreover, we asked if these receptors have a role on fungicidal activity, H(2)O(2) and IL-6, IL-8, TNFalpha and IL-10 production, by activating and challenging cells. All cytokines increased TLR2 and TLR4 expression. Pb18 also increased TLR2 expression, inducing an additional cytokine effect. on the contrary, it inhibited TLR4 expression. All cytokines increased neutrophil fungicidal activity and H(2)O(2) production; however, this process was not associated with TLR2 or TLR4. Neutrophil activation by GMCSF and TNF-alpha resulted in a significant increase of IL-8 production, while IL-15 and IFN-alpha have no effect. Pb18 also augmented IL-8 expression, inducing an additional effect to that of cytokines. None of the cytokines activated neutrophils by releasing IL-10. This cytokine was only detected after Pb18 challenge. Interestingly, IL-8 and IL-10 production involved TLR2 and mainly TLR4 modulation. The present results suggest that Pb18 interaction with neutrophils through TLR2 and TLR4 with consequent IL-8 and IL-10 production may be considered a pathogenic mechanism in paracoccidioidomycosis.