993 resultados para Function limit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While Fiber Bragg Grating (FBG) sensors have been extensively used for temperature and strain sensing, clad etched FBGs (EFBGs) have only recently been explored for refractive index sensing. Prior literature in EFBG based refractive index sensing predominantly deals with bulk refractometry only, where the Bragg wavelength shift of the sensor as a function of the bulk refractive index of the sample can be analytically modeled, unlike the situation for adsorption of molecular thin films on the sensor surface. We used a finite element model to calculate the Bragg wavelength change as a function of thickness and refractive index of the adsorbing molecular layer and compared the model with the real-time, in-situ measurement of electrostatic layer-by-layer (LbL) assembly of weak polyelectrolytes on the silica surface of EFBGs. We then used this model to calculate the layer thickness of LbL films and found them to be in agreement with literature. Further, we used this model to arrive at a realistic estimate of the limit of detection of EFBG sensors based on nominal measurement noise levels in current FBG interrogation systems and found that sufficiently thinned EFBGs can provide a competitive platform for real-time measurement of molecular interactions while simultaneously leveraging the high multiplexing capabilities of fiber optics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a lower bound limit analysis approach for solving an axisymmetric stability problem by using the Drucker-Prager (D-P) yield cone in conjunction with finite elements and nonlinear optimization. In principal stress space, the tip of the yield cone has been smoothened by applying the hyperbolic approximation. The nonlinear optimization has been performed by employing an interior point method based on the logarithmic barrier function. A new proposal has also been given to simulate the D-P yield cone with the Mohr-Coulomb hexagonal yield pyramid. For the sake of illustration, bearing capacity factors N-c, N-q and N-gamma have been computed, as a function of phi, both for smooth and rough circular foundations. The results obtained from the analysis compare quite well with the solutions reported from literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-life structures often possess piecewise stiffness because of clearances or interference between subassemblies. Such an aspect can alter a system's fundamental free vibration response and leads to complex mode interaction. The free vibration behaviour of an L-shaped beam with a limit stop is analyzed by using the frequency response function and the incremental harmonic balance method. The presence of multiple internal resonances, which involve interactions among the first five modes and are extremely complex, have been discovered by including higher harmonics in the analysis. The results show that mode interaction may occur if the higher harmonics of a vibration mode are close to the natural frequency of a higher mode. The conditions for the existence of internal resonance are explored, and it is shown that a prerequisite is the presence of bifurcation points in the form of intersecting backbone curves. A method to compute such intersections by using only one harmonic in the free vibration solution is proposed. (C) 1996 Academic Press Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper estimates a new measure of liquidity costs in a market driven by orders. It represents thecost of simultaneously buying and selling a given amount of shares, and it is given by a single measure of ex-ante liquidity that aggregates all available information in the limit order book for a given number of shares. The cost of liquidity is an increasing function relating bid-ask spreads with the amounts available for trading. This measure completely characterizes the cost of liquidity of any given asset. It does not suffer from the usual ambiguities related to either the bid-ask spread or depth when they are considered separately. On the contrary, with a single measure, we are able to capture all dimensions of liquidity costs on ex-ante basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to measure the diffraction-limit wavefront, we present three types of common-path double-shearing interferometers based on the theory of double shearing. Two pairs of half-aperture or whole-aperture wedge plates are used to introduce opposite tilt to realize the double-shearing function. By comparing the fringe widths in two fields, the marginal wavefront aberration can be obtained. In the paper, we give three different configurations: half-aperture configuration, whole-field configuration and double-interferometer configuration. The half-aperture configuration has the features of high sensitivity, stabilization and easy alignment. For the whole-field configuration, the interference fringes are displayed in two whole fields. Consequently, the divergent or convergent characteristic and aberration types of a wavefront can be identified visually. The whole-field configuration can be changed to the double-interferometer configuration for continuous test. Both small and large wavefront aberrations can be measured by the double-interferometer configuration. The minimum detectable wavefront aberration (W-0)(min) comes to 0.03 lambda. Lastly, we present the experimental results for the three types of double-shearing interferometers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let PK, L(N) be the number of unordered partitions of a positive integer N into K or fewer positive integer parts, each part not exceeding L. A distribution of the form

Ʃ/N≤x PK,L(N)

is considered first. For any fixed K, this distribution approaches a piecewise polynomial function as L increases to infinity. As both K and L approach infinity, this distribution is asymptotically normal. These results are proved by studying the convergence of the characteristic function.

The main result is the asymptotic behavior of PK,K(N) itself, for certain large K and N. This is obtained by studying a contour integral of the generating function taken along the unit circle. The bulk of the estimate comes from integrating along a small arc near the point 1. Diophantine approximation is used to show that the integral along the rest of the circle is much smaller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In any thermoacoustic analysis, it is important not only to predict linear frequencies and growth rates, but also the amplitude and frequencies of any limit cycles. The Flame Describing Function (FDF) approach is a quasi-linear analysis which allows the prediction of both the linear and nonlinear behaviour of a thermoacoustic system. This means that one can predict linear growth rates and frequencies, and also the amplitudes and frequencies of any limit cycles. The FDF achieves this by assuming that the acoustics are linear and that the flame, which is the only nonlinear element in the thermoacoustic system, can be adequately described by considering only its response at the frequency at which it is forced. Therefore any harmonics generated by the flame's nonlinear response are not considered. This implies that these nonlinear harmonics are small or that they are sufficiently filtered out by the linear dynamics of the system (the low-pass filter assumption). In this paper, a flame model with a simple saturation nonlinearity is coupled to simple duct acoustics, and the success of the FDF in predicting limit cycles is studied over a range of flame positions and acoustic damping parameters. Although these two parameters affect only the linear acoustics and not the nonlinear flame dynamics, they determine the validity of the low-pass filter assumption made in applying the flame describing function approach. Their importance is highlighted by studying the level of success of an FDF-based analysis as they are varied. This is achieved by comparing the FDF's prediction of limit-cycle amplitudes to the amplitudes seen in time domain simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantization of RLC circuit is given and described by a double-wave function. A comparison between classical limit result and those of classical theory is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of achieving super-resolution, i.e. resolution beyond the classical Rayleigh distance of half a wavelength, is a real challenge in several imaging problems. The development of computer-assisted instruments and the possibility of inverting the recorded data has clearly modified the traditional concept of resolving power of an instrument. We show that, in the framework of inverse problem theory, the achievable resolution limit arises no longer from a universal rule but instead from a practical limitation due to noise amplification in the data inversion process. We analyze under what circumstances super-resolution can be achieved and we show how to assess the actual resolution limits in a given experiment, as a function of the noise level and of the available a priori knowledge about the object function. We emphasize the importance of the a priori knowledge of its effective support and we show that significant super-resolution can be achieved for "subwavelength sources", i.e. objects which are smaller than the probing wavelength.