908 resultados para Fruit drop
Resumo:
O trabalho avaliou os efeitos de auxinas e giberelina, combinadas e aplicadas em pré-colheita no desenvolvimento e na porcentagem de queda natural dos frutos de laranjeira-'Hamlin' (Citrus sinensis Osbeck). Foram realizadas 3 aplicações a intervalos de 45 dias dos seguintes tratamentos, via foliar: GA3 + NAA a 12,5mg.L-1 de cada; GA3 + NAA a 25mg.L-1; GA3 + 2,4-D a 12,5mg.L-1; GA3 + 2,4-D a 25mg.L-1; NAA + 2,4-D a 12,5mg.L-1; NAA + 2,4-D a 25mg.L-1; testemunha (água). As variáveis avaliadas foram: porcentagem de queda natural dos frutos (%), massa fresca de frutos (g) e teor de suco no fruto (%). Os resultados obtidos mostram que a utilização de reguladores vegetais atrasa a queda natural de frutos de laranjeira-'Hamlin', podendo-se prolongar o período de colheita, destacando-se o tratamento com GA3 25mg.L-1 +2,4-D 25mg.L-1 e também não influenciaram no aumento da massa fresca e no teor de suco dos frutos.
Resumo:
Postbloom fruit drop (PFD) of citrus, caused by Colletotrichum acutatum, produces orange-brown lesions on petals and results in premature fruit drop and the retention of calyces. C. gloeosporioides is common in groves and causes postharvest anthracnose on fruit. Both diseases are controlled effectively by the fungicide benomyl in research fields and commercial orchards. Highly sensitive and resistant isolates of C. gloeosporioides were found, whereas all isolates of C. acutatum tested were moderately resistant. In preliminary studies conducted in vitro with three isolates of each, mycelial growth of sensitive isolates of C. gloeosporioides was inhibited completely by benomyl (Benlate 50 WP) at 1.0 μg/ml, whereas resistant isolates grew well at 10 μg/ml. Growth of all isolates of C. acutatum was inhibited by about 55% at 0.1 μg/ml and by 80% at 1.0 μg/ml. Spore germination of C. acutatum was inhibited more at 0.1 μg/ml than at 1.0 μg/ml or higher concentrations. In all, 20 isolates of C. acutatum from 17 groves and 20 isolates of C. gloeosporioides from 7 groves were collected from locations with different histories of benomyl usage in São Paulo, Brazil, and Florida, United States. Benomyl at 1.0 μ.g/ml completely inhibited growth of 133 isolates of C. gloeosporioides, with the exception of 7 isolates that were highly resistant to the fungicide, whereas all isolates of C. acutatum were only partially inhibited at 0.1 and 1.0 μg/ml. Analysis of variance indicated that the sensitivity of the isolates of C. acutatum was not affected by benomyl usage or grove of origin, and country of origin had only minor effects. No highly resistant or sensitive isolate of C. acutatum was recovered. Partial sequencing of the β-tubulin gene did not reveal nucleotide substitutions in codons 198 or 200 in C. acutatum that usually are associated with benomyl resistance in other fungi.
Resumo:
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post-bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration. © 2012 British Society for Plant Pathology.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
In this study, we evaluated the efficiency of six isolates of Saccharomyces cerevisiae in controlling Colletotrichum acutatum, the causal agent of postbloom fruit drop that occur in pre-harvest citrus. We analyzed the mechanisms of action involved in biological control such as: production of antifungal compounds, nutrient competition, detection of killer activity, and production of hydrolytic enzymes of the isolates of S. cerevisiae on C. acutatum and their efficiency in controlling postbloom fruit drop on detached citrus flowers. Our results showed that all six S. cerevisiae isolates produced antifungal compounds, competed for nutrients, inhibited pathogen germination, and produced killer activity and hydrolytic enzymes when in contact with the fungus wall. The isolates were able to control the disease when detached flowers were artificially inoculated, both preventively and curatively. In this work we identified a novel potential biological control agent for C acutatum during pre-harvest. This is the first report of yeast efficiency for the biocontrol of postbloom fruit drop, which represents an important contribution to the field of biocontrol of diseases affecting citrus populations worldwide. (C) 2015 Elsevier GmbH. All rights reserved.
Resumo:
Carbon fluxes and allocation pattern, and their relationship with the main environmental and physiological parameters, were studied in an apple orchard for one year (2010). I combined three widely used methods: eddy covariance, soil respiration and biometric measurements, and I applied a measurement protocol allowing a cross-check between C fluxes estimated using different methods. I attributed NPP components to standing biomass increment, detritus cycle and lateral export. The influence of environmental and physiological parameters on NEE, GPP and Reco was analyzed with a multiple regression model approach. I found that both NEP and GPP of the apple orchard were of similar magnitude to those of forests growing in similar climate conditions, while large differences occurred in the allocation pattern and in the fate of produced biomass. Apple production accounted for 49% of annual NPP, organic material (leaves, fine root litter, pruned wood and early fruit drop) contributing to detritus cycle was 46%, and only 5% went to standing biomass increment. The carbon use efficiency (CUE), with an annual average of 0.68 ± 0.10, was higher than the previously suggested constant values of 0.47-0.50. Light and leaf area index had the strongest influence on both NEE and GPP. On a diurnal basis, NEE and GPP reached their peak approximately at noon, while they appeared to be limited by high values of VPD and air temperature in the afternoon. The proposed models can be used to explain and simulate current relations between carbon fluxes and environmental parameters at daily and yearly time scale. On average, the annual NEP balanced the carbon annually exported with the harvested apples. These data support the hypothesis of a minimal or null impact of the apple orchard ecosystem on net C emission to the atmosphere.
Resumo:
An experiment was conducted in 2013 and 2014 with three newly introduced cultivars of apricot (Prunus armeniaca L.), namely “Antonio Errani”, “Tirynthos” and “Ninfa” to study their performance and adaptability under Egyptian conditions. Results indicated that calculating the chilling hours temperature at or below 15°C was more suitable than temperatures at or below 7.2°C and 10°C. The cultivar with a low chilling requirement started with the opening of vegetative and flower buds earlier when compared to other cultivars. Furthermore, the cultivar Ninfa required less heat units as compared to the other two cultivars. Thus, the accumulated growing degree-days (GDDs) from the time of the flower bud break l until fruit maturity was low in early matured Ninfa cultivar. However, Antonio Errani and Tirynthos cultivars were late in the date of fruit ripening. Meanwhile, there was no significant difference in the opening percentage of vegetative and flower buds, trunk circumference, fruit drop, fruit number and yield weight among cultivars during the two seasons. Conversely, the leaf drop of Antonio Errani cultivar was earlier while Ninfa cultivar started it’s leaf drop later in the two seasons. Tirynthos gave the highest fruit weight, fruit size and fruit surface lightness. Meanwhile, the Antonio Errani cultivar was the highest in fruit firmness and total soluble solids. The appearance and behavior of cultivars under the study varied from one season to another with shoot length, leaf area, percentage of fruit set and acidity. It can be recommended from the present study that, Antonio Errani, Tirynthos and Ninfa cultivars are well adapted under Egyptian conditions. Further, fruits from the cultivars mature early and late in the season and can fulfill the demands of the market.