950 resultados para Front-Tracking Method
Resumo:
In this paper, the thermocapillary motion problem of drops is investigated using the axisymmetric model. The front-tracking method is employed to capture the drop interface. We find that the migration velocity of the drop is greatly influenced by the temperature field in the drop when Ma is fairly large (>100), which leads to an increase-decrease migration velocity at the beginning of our simulations. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Thermocapillary motion of a drop in a uniform temperature gradient is investigated numerically. The three-dimensional incompressible Navier-Stokes and energy equations are solved by the finite-element method. The front tracking technique is employed to describe the drop interface. To simplify the calculation, the drop shape is assumed to be a sphere. It has been verified that the assumption is reasonable under the microgravity environment. Some calculations have been performed to deal with the thermocapillary motion for the drops of different sizes. It has been verified that the calculated results are in good agreement with available experimental and numerical results. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Um código computacional para escoamentos bifásicos incorporando metodologia híbrida entre oMétodo dos Elementos Finitos e a descrição Lagrangeana-Euleriana Arbitrária do movimento é usado para simular a dinâmica de um jato transversal de gotas na zona primária de quebra. Os corpos dispersos são descritos por meio de um método do tipo front-tracking que produz interfaces de espessura zero através de malhas formadas pela união de elementos adjacentes em ambas as fases e de técnicas de refinamento adaptativo. Condições de contorno periódicas são implementadas de modo variacionalmente consistente para todos os campos envolvidos nas simulações apresentadas e uma versão modificada do campo de pressão é adicionada à formulação do tipo um-fluido usada na equação da quantidade de movimento linear. Simulações numéricas diretas em três dimensões são executadas para diferentes configurações de líquidos imiscí veis compatíveis com resultados experimentais encontrados na literatura. Análises da hidrodinâmica do jato transversal de gotas nessas configurações considerando trajetórias, variação de formato de gota, espectro de pequenas perturbações, além de aspectos complementares relativos à qualidade de malha são apresentados e discutidos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front-tracking method. The velocity field is computed using a finite-difference discretization of a modification of the NavierStokes equations. These equations together with the continuity equation are solved for the two-dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in the image of a moving object in a scene. The method is simple and easy to implement because no complex structures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations with a vision system.
Resumo:
The methodology undertaken, the channel model and the system model created for developing a novel adaptive equalization method and a novel channel tracking method for uplink of MU-MIMO-OFDM systems is presented in this paper. The results show that the channel tracking method works with 97% accuracy, while the training-based initial channel estimation method shows poor performance in estimating the actual channel comparatively.
Resumo:
We propose a novel highly sensitive wave front detection method for a quick check of a flat wave front by taking advantage of a non-zero-order pi phase plate that yields a non-zero-order diffraction pattern. When a light beam with a flat wave front illuminates a phase plate, the zero-order intensity is zero. When there is a slight distortion of the wave front, the zero-order intensity increases. The ratio of first-order intensity to that of zero-order intensity is used as the criterion with which to judge whether the wave front under test is flat, eliminating the influence of background light. Experimental results demonstrate that this method is efficient, robust, and cost-effective and should be highly interesting for a quick check of a flat wave front of a large-aperture laser beam and adaptive optical systems. (c) 2005 Optical Society of America.
Resumo:
When tracking resources in large-scale, congested, outdoor construction sites, the cost and time for purchasing, installing and maintaining the position sensors needed to track thousands of materials, and hundreds of equipment and personnel can be significant. To alleviate this problem a novel vision based tracking method that allows each sensor (camera) to monitor the position of multiple entities simultaneously has been proposed. This paper presents the full-scale validation experiments for this method. The validation included testing the method under harsh conditions at a variety of mega-project construction sites. The procedure for collecting data from the sites, the testing procedure, metrics, and results are reported. Full-scale validation demonstrates that the novel vision tracking provides a good solution to track different entities on a large, congested construction site.
Resumo:
Tracking applications provide real time on-site information that can be used to detect travel path conflicts, calculate crew productivity and eliminate unnecessary processes at the site. This paper presents the validation of a novel vision based tracking methodology at the Egnatia Odos Motorway in Thessaloniki, Greece. Egnatia Odos is a motorway that connects Turkey with Italy through Greece. Its multiple open construction sites serves as an ideal multi-site test bed for validating construction site tracking methods. The vision based tracking methodology uses video cameras and computer algorithms to calculate the 3D position of project related entities (e.g. personnel, materials and equipment) in construction sites. The approach provides an unobtrusive, inexpensive way of effectively identifying and tracking the 3D location of entities. The process followed in this study starts by acquiring video data from multiple synchronous cameras at several large scale project sites of Egnatia Odos, such as tunnels, interchanges and bridges under construction. Subsequent steps include the evaluation of the collected data and finally, performing the 3D tracking operations on selected entities (heavy equipment and personnel). The accuracy and precision of the method's results is evaluated by comparing it with the actual 3D position of the object, thus assessing the 3D tracking method's effectiveness.
Resumo:
Tracking methods have the potential to retrieve the spatial location of project related entities such as personnel and equipment at construction sites, which can facilitate several construction management tasks. Existing tracking methods are mainly based on Radio Frequency (RF) technologies and thus require manual deployment of tags. On construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. To address these limitations, this paper proposes an alternate 3D tracking method based on vision. It operates by tracking the designated object in 2D video frames and correlating the tracking results from multiple pre-calibrated views using epipolar geometry. The methodology presented in this paper has been implemented and tested on videos taken in controlled experimental conditions. Results are compared with the actual 3D positions to validate its performance.
Resumo:
The purpose of this supplemental project was to collect invaluable data from the large-scale construction sites of Egnatia Odos motorway needed to validate a novel automated vision-tracking method created under the parent grant. For this purpose, one US graduate and three US undergraduate students traveled to Greece for 4 months and worked together with 2 Greek graduate students of the local faculty collaborator. This team of students monitored project activities and scheduled data collection trips on a daily basis, setup a mobile video data collection lab on the back of a truck, and drove to various sites every day to collect hundreds of hours of video from multiple cameras on a large variety of activities ranging from soil excavation to bridge construction. The US students were underrepresented students from minority groups who had never visited a foreign country. As a result, this trip was a major life experience to them. They learned how to live in a non-English speaking country, communicate with Greek students, workers and engineers. They lead a project in a very unfamiliar environment, troubleshoot myriad problems that hampered their progress daily and, above all, how to collaborate effectively and efficiently with other cultures. They returned to the US more mature, with improved leadership and problem-solving skills and a wider perspective of their profession.
Resumo:
An N-shape thermal front in the western South Yellow Sea (YS) in winter was detected using Advanced Very High Resolution Radiation (AVHRR) Sea Surface Temperature data and in-situ observations with a merged front-detecting method. The front, which exists from late October through early March, consists of western and eastern wings extending roughly along the northeast-southwest isobaths with a southeastward middle segment across the 20-50 m isobaths. There are north and south inflexions connecting the middle segment with the western and eastern wings, respectively. The middle segment gradually moves southwestward from November through February with its length increasing from 62 km to 107 km and the southern inflexion moving from 36.2A degrees N to 35.3A degrees N. A cold tongue is found to coexist with the N-shape front, and is carried by the coastal jet penetrating southward from the tip of the Shandong Peninsula into the western South YS as revealed by a numerical simulation. After departing from the coast, the jet flows as an anti-cyclonic recirculation below 10 m depth, trapping warmer water originally carried by the compensating Yellow Sea Warm Current (YSWC). A northwestward flowing branch of the YSWC is also found on the lowest level south of the front. The N-shape front initially forms between the cold tongue and warm water involved in the subsurface anti-cyclonical recirculation and extends upwards to the surface through vertical advection and mixing. Correlation analyses reveal that northerly and easterly winds tend to be favorable to the formation and extension of the N-shape front probably through strengthening of the coastal jet and shifting the YSWC pathway eastward, respectively.
Resumo:
Unlike several other farm animal species, the broiler chicken remains unprotected by species-specific legislation. The densities at which broilers should be kept is a highly contentious issue-some studies have demonstrated increased welfare problems at higher densities, whilst a few others have, contrary to expectations, suggested that broilers may actually find crowds of other birds attractive. A tracking method was developed and used to provide an insight into the social preferences of commercial broiler chickens in situ-inside commercial, closed-system broiler houses. The aim was to simultaneously assess the relative impact of global measures of density, such as target and actual stocking densities and local measures of the social environment on the behaviour and route taken to feed by focal birds. Birds were tracked inside 20 commercial broiler houses across the UK. Results from this study show that stocking density per se seems to have little direct effect on the individual behaviours of focal broiler chickens. However, there may still be an indirect effect of stocking density on broiler behaviour, mediated through the local social environment. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.