975 resultados para Friends of the Everglades


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued without t.p. ; title supplied from accompanying SPEC flyer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this manuscript we define a new term we call coastal groundwater discharge (CGD), which is related to submarine groundwater discharge (SGD), but occurs when seawater intrudes inland to force brackish groundwater to discharge to the coastal wetlands. A hydrologic and geochemical investigation of both the groundwater and surface water in the southern Everglades was conducted to investigate the occurrence of CGD associated with seawater intrusion. During the wet season, the surface water chemistry remained fresh. Enhanced chloride, sodium, and calcium concentrations, indicative of brackish groundwater discharge, were observed in the surface water during the dry season. Brackish groundwaters of the southern Everglades contain 1–2.3μM concentrations of total phosphorus (TP). These concentrations exceed the expected values predicted by conservative mixing of local fresh groundwater and intruding seawater, which both have TPμM. The additional source of TP may be from seawater sediments or from the aquifer matrix as a result of water–rock interactions (such as carbonate mineral dissolution and ion exchange reactions) induced by mixing fresh groundwater with intruding seawater. We hypothesize that CGD maybe an additional source of phosphorus (a limiting nutrient) to the coastal wetlands of the southern Everglades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large numbers of colonially nesting herons, egrets, ibises, storks and spoonbills were one of the defining natural phenomena of the historical Everglades. Reproduction of these species has been tracked over at least a century, and some clear responses to dramatic anthropogenic hydrological alterations have been established. These include a marked decline in nesting populations of several species, and a movement of colonies away from the over-drained estuarine region. Ponding in a large portion of the freshwater marsh has favored species that hunt by sight in deep water (egrets, cf. 25–45 cm), while tactile feeders (ibises and storks) that depend on concentrated prey in shallow water (5–25 cm) have become proportionately much less common. There has been a marked increase in the interval between exceptionally large breeding aggregations of White Ibises (Eudocimus albus). Loss of short hydroperiod wetlands on the margins of the Everglades have delayed nest initiations 1–2 months by Wood Storks (Mycteria americana) resulting in poor nesting success. These responses are consistent with mechanisms that involve foraging, and the availability and production of prey animals, and each of the relationships is highly dependent on hydrology. Here, we define a group of characteristics about wading bird dynamics (= indicators) that collectively track the specific ecological relationships that supported ibises and storks in the past. We suggest four metrics as indicators of restoration success: timing of nesting by storks, the ratio of nesting ibises + storks to Great Egrets, the proportion of all nests located in the estuarine/freshwater ecotone, and the interval between years with exceptionally large ibis nestings. Each of these metrics has historical (e.g., predrainage) data upon which to base expectations for restoration, and the metrics have little measurement error relative to the large annual variation in numbers of nests. In addition to the strong scientific basis for the use of these indicators, wading birds are also a powerful tool for public communication because they have strong aesthetic appeal, and their ecological relationships with water are intuitively understandable. In the interests of communicating with the public and decision-makers, we integrate these metrics into a single-page annual “traffic-light” report card for wading bird responses. Collectively, we believe these metrics offer an excellent chance of detecting restoration of the ecosystem functions that supported historical wading bird nesting patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 μg P g dw−1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological monitoring is key to successful ecosystem restoration. Because all components within an ecosystem cannot be monitored, it is important to select indicators that are representative of the system, integrate system responses, clearly respond to system change, can be effectively and efficiently monitored, and are easily communicated. The roseate spoonbill is one ecological indicator species that meets these criteria within the Everglades ecosystem. Monitoring of roseate spoonbills in Florida Bay over the past 70 years has shown that aspects of this species’ reproduction respond to changes in hydrology and corresponding changes in prey abundance and availability. This indicator uses nesting location, nest numbers and nesting success in response to food abundance and availability. In turn, prey abundance is a function of hydrological conditions (especially water depth) and salinity. Metrics and targets for these performance measures were established based on previous findings. Values of each metric were translated into indices and identified as stoplight colors with green indicating that a given target has been met, yellow indicating that conditions are below the target, but within an acceptable range of it, and red indicating the measure is performing poorly in relation to the target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This poster presentation will exhibit the ongoing design work within two small islands adjacent to Diner Key Marina gifted by the City of Miami to the non-profit organization, Shake-A-Leg. This organization works to blur the lines between access, recreation, and skill, redefining what is possible. Abled and disabled children, adolescents, and young adults go to Shake-A-Leg to participate in a myriad of activities such as sailing, kayaking, swimming, painting, and socializing in these islands regardless of their inadequate walkways and installations. The users are people from different social statuses, physical and mental abilities. This poster will exhibit the design proposal to enhance the islands’ infrastructure to provide seamless access to all its visitors through the lush habitat in these islands. The proposed program challenges the disabilities of the person and helps them to mediate and transform them into new possibilities and abilities. The program proposes ten components which include a nature trail, restrooms, dinning center, art studio, and observation deck. The design of each space draws from the sailing boat to create solutions were the user will explore, participate and enjoy. The location encourages a feeling of challenge but at the same time it is a place for relief and freedom, allowing them to discover the diversity through experimentation and interaction with the environment. This poster presents design principles that value equal access and experience, celebrating the differences among users and the environment, blurring the lines between nature and access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landscape characteristics, disturbances, and temporal variability influence predator-prey relationships, but are often overlooked in experimental studies. In the Everglades, seasonal disturbances force the spatial overlap of predators and prey, potentially increasing predation risk for prey. This study examined seasonal and diel patterns of fish use of canals and assessed predation risk for small fishes using an encounter rate model. I deployed an imaging sonar in Everglades canals to quantify density and swimming speeds of fishes, and detect anti-predator behaviors by small fishes. Generally, seasonal declines of marsh water-levels increased the density of large fishes in canals. Densities of small and large fishes were positively correlated and, as small-fish density increased, schooling frequency also increased. At night, schools disbanded and small fishes were observed congregating along the canal edge. The encounter rate model predicted highest predator-prey encounters during the day, but access to cover may reduce predation risk for small fishes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quarterly ichthyoplankton sampling was conducted at 16 estuarine and 24 inshore stations along the Florida Everglades from May 1971 to February 1972. The area is one of the most pristine along lhe Florida coast. The survey provided the first comprehensive information on seasonal occurrence, abundance (under 10 m' of surface area), and distribution of fish eggs and larvae in this area. A total of 209,462 fish eggs and 78,865 larvae was collected. Eggs were identified only as fish eggs, but among the larvae, 37 families, 47 genera, and 37 species were identified. Abundance of eggs and larvae, and diversity of larvae, were greatest in the inshore zone. The 10 most abundant fish families which together made up 90.7% of all larvae from the study area were, in descending order of abundance: Clupeidae, Engraulidae, Gobiidae, Sciaenidae, Carangidae, Pomadasyidae, Cynoglossidae, Gerreidae, Triglidae, and Soleidae. Clupeidae, Engraulidae, and Gobiidae made up 59.9% of all larvae. The inshore zone (to a depth of about 10 m) was a spawning ground and nursery for many fishes important to fisheries. The catch of small larvae (<>3.5 mm SL) indicated that most fishes identified from the 10 most abundant families spawned throughout the inshore zone at depths of <> 10 m, but Orthopristis chrysoptera, Gerreidae, and Prionotus spp. spawned at depths > 10 m, with offshore to inshore (eastward) larval transport. Salinity was one of several environmental factors that probably limited the numbers of eggs and larvae in the estuarine zone. Abundance of eggs and larvae at inshore stations was usually as great as, and sometimes greater than, the abundance of eggs and larvae at offshore stations (due west of the Everglades). (PDF file contains 81 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation research project addressed the question of how hydrologic restoration of the Everglades is impacting the nutrient dynamics of marsh ecosystems in the southern Everglades. These effects were analyzed by quantifying nitrogen (N) cycle dynamics in the region. I utilized stable isotope tracer techniques to investigate nitrogen uptake and cycling between the major ecosystem components of the freshwater marsh system. I recorded the natural isotopic signatures (δ15N and δ 13C) for major ecosystem components from the three major watersheds of the Everglades: Shark River Slough, Taylor Slough, and C-111 basin. Analysis of δ15 N and δ13C natural abundance data were used to demonstrate the spatial extent to which nitrogen from anthropogenic or naturally enriched sources is entering the marshes of the Everglades. In addition, I measured the fluxes on N between various ecosystem components at both near-canal and estuarine ecotone locations. Lastly, I investigated the effect of three phosphorus load treatments (0.00 mg P m-2, 6.66 mg P m-2, and 66.6 mg P m-2) on the rate and magnitude of ecosystem N-uptake and N-cycling. The δ15N and δ13C natural abundance data supported the hypothesis that ecosystem components from near-canal sites have heavier, more enriched δ 15N isotopic signatures than downstream sites. The natural abundance data also showed that the marshes of the southern Everglades are acting as a sink for isotopically heavier, canal-borne dissolved inorganic nitrogen (DIN) and a source for "new" marsh derived dissolved organic nitrogen (DON). In addition, the 15N mesocosm data showed the rapid assimilation of the 15N tracer by the periphyton component and the delayed N uptake by soil and macrophyte components in the southern Everglades.