827 resultados para Freshwater turtles
Resumo:
Changes in blood-gas, acid-base, and plasma-ion status were investigated in the bimodally respiring turtle, Rheodytes leukops, during prolonged dives of up to 12 h. Given that R. leukops routinely submerges for several hours, the objective of this study was to determine whether voluntarily diving turtles remain aerobic and simultaneously avoid hypercapnic conditions over increasing dive lengths. Blood PO2, PCO2, and pH, as well as plasma concentrations of lactate, glucose, Na+, K+, Cl-, total Ca, and total Mg were determined in venous blood collected from the occipital sinus. Blood PO2 declined significantly with dive length; however, oxy-haemoglobin saturation remained greater than 30% for all R. leukops sampled. No changes were observed in blood PCO2, pH, [HCO3-], or plasma glucose, with increasing dive length. Despite repeated dives lasting more than 2 h, plasma lactate remained less than 3 mmol l(-1) for all R. leukops sampled, indicating the absence of anaerobiosis. Compensatory acid-base adjustments associated with anaerobiosis (e.g. declining [Cl-], increasing total [Ca] and [Mg]) were likewise absent, with plasma-ion concentrations remaining stable with increasing dive length. Results indicate that R. leukops utilises aquatic respiration to remain aerobic during prolonged dives, thus effectively avoiding the development of a metabolic and respiratory acidosis.
Resumo:
From June 1995 to August 2002 we assessed green turtle (Chelonia mydas) population structure and survival, and identified human impact, at Bahia de los Angeles, a large bay that was once the site of the greatest sea turtle harvest rates in the Gulf of California, Mexico. Turtles were captured live with entanglement nets and mortality was quantified through stranding surveys and flipper tag recoveries. A total of 14,820 netting hours (617.5 d) resulted in 255 captures of 200 green turtles. Straight-carapace length and mass ranged from 46.0-100.0 cm (mean = 74.3 +/- 0.7 cm) and 14.5-145.0 kg (mean = 61.5 +/- 1.7 kg), respectively. The size-frequency distribution remained stable during all years and among all capture locations. Anthropogenic-derived injuries ranging from missing flippers to boat propeller scars were present in 4% of captured turtles. Remains of 18 turtles were found at dumpsites, nine stranded turtles were encountered in the study area, and flipper tags from seven turtles were recovered. Survival was estimated at 0.58 for juveniles and 0.97 for adults using a joint live-recapture and dead-recovery model (Burnham model). Low survival among juveniles, declining annual catch per unit effort, and the presence of butchered carcasses indicated human activities continue to impact green turtles at this foraging area.
Resumo:
The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.
Resumo:
The Burnett River snapping turtle (Elseya sp.) from the Burnett, Mary and Fitzroy river systems is an undescribed Australian freshwater turtle, of which very little ecological information is known. This paper describes the dietary ecology of the species in the Burnett River catchment. Stomach and faecal samples were collected from turtles and an index of relative importance was used to rank food items found in stomach samples. This index indicated that algae and aquatic ribbon weed (Vallisneria) were the dominant food items consumed. No difference in diet was found between males and females. Although the sample size was small, diet appeared to vary slightly seasonally, with Elseya sp. selectively feeding on the flower buds of the Chinese elm tree (Celtis chinensis) and the seeds of the blackbean tree (Castanospermum australe) when these food items were seasonally available. Faecal samples suggest that the most ingested foods ( algae and aquatic ribbon weed) were also the most digestible. Although predominantly herbivorous, Elseya sp. was seen to eat carrion once in the wild.
Resumo:
The effect of the tumour-forming disease, fibropapillomatosis, on the somatic growth dynamics of green turtles resident in the Pala'au foraging grounds (Moloka'i, Hawai'i) was evaluated using a Bayesian generalised additive mixed modelling approach. This regression model enabled us to account for fixed effects (fibropapilloma tumour severity), nonlinear covariate functional form (carapace size, sampling year) as well as random effects due to individual heterogeneity and correlation between repeated growth measurements on some turtles. Somatic growth rates were found to be nonlinear functions of carapace size and sampling year but were not a function of low-to-moderate tumour severity. On the other hand, growth rates were significantly lower for turtles with advanced fibropapillomatosis, which suggests a limited or threshold-specific disease effect. However, tumour severity was an increasing function of carapace size-larger turtles tended to have higher tumour severity scores, presumably due to longer exposure of larger (older) turtles to the factors that cause the disease. Hence turtles with advanced fibropapillomatosis tended to be the larger turtles, which confounds size and tumour severity in this study. But somatic growth rates for the Pala'au population have also declined since the mid-1980s (sampling year effect) while disease prevalence and severity increased from the mid-1980s before levelling off by the mid-1990s. It is unlikely that this decline was related to the increasing tumour severity because growth rates have also declined over the last 10-20 years for other green turtle populations resident in Hawaiian waters that have low or no disease prevalence. The declining somatic growth rate trends evident in the Hawaiian stock are more likely a density-dependent effect caused by a dramatic increase in abundance by this once-seriously-depleted stock since the mid-1980s. So despite increasing fibropapillomatosis risk over the last 20 years, only a limited effect on somatic growth dynamics was apparent and the Hawaiian green turtle stock continues to increase in abundance.
Resumo:
In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles (Chelonia mydas). In the first year, hatchlings from eggs incubated at 26 degrees C were larger in size than hatchlings from 28 and 30 degrees C, whilst in the second year hatchlings from 25.5 degrees C were similar in size to hatchings from 30 degrees C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28 degrees C, hatchlings from eggs incubated at 25.5 and 26 degrees C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30 degrees C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.
Resumo:
Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.