983 resultados para Frequency features
Resumo:
Personality factors implicated in alcohol misuse have been extensively investigated in adult populations. Fewer studies have clarified the robustness of personality dimensions in predicting early onset alcohol misuse in adolescence. The aim of this study was to examine the predictive utility of two prominent models of personality (Cloninger, 1987; Eysenck & Eysenck, 1975) in emergent alcohol misuse in adolescence. One hundred and 92 secondary school students (mean age = 13.8 years, SD = 0.5) were administered measures of personality (Revised Junior Eysenck Personality Questionnaire – abbreviated; Temperament scale of Junior Temperament and Character Inventory) and drinking behavior (quantity and frequency of consumption, Alcohol Use Disorders Identification Test) at Time 1. At 12-month follow-up, 170 students (88.5%) were retained. Hierarchical multiple regressions revealed the dimensions of psychoticism, extraversion, and Novelty-Seeking to be the most powerful predictors of future alcohol misuse in adolescents. Results provide support for the etiological relevance of these dimensions in the development of early onset alcohol misuse. Findings can be used to develop early intervention programs that target personality risk factors for alcohol misuse in high-risk youth.
Resumo:
Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
This paper presents results on the robustness of higher-order spectral features to Gaussian, Rayleigh, and uniform distributed noise. Based on cluster plots and accuracy results for various signal to noise conditions, the higher-order spectral features are shown to be better than moment invariant features.
Resumo:
This paper investigates the use of mel-frequency deltaphase (MFDP) features in comparison to, and in fusion with, traditional mel-frequency cepstral coefficient (MFCC) features within joint factor analysis (JFA) speaker verification. MFCC features, commonly used in speaker recognition systems, are derived purely from the magnitude spectrum, with the phase spectrum completely discarded. In this paper, we investigate if features derived from the phase spectrum can provide additional speaker discriminant information to the traditional MFCC approach in a JFA based speaker verification system. Results are presented which provide a comparison of MFCC-only, MFDPonly and score fusion of the two approaches within a JFA speaker verification approach. Based upon the results presented using the NIST 2008 Speaker Recognition Evaluation (SRE) dataset, we believe that, while MFDP features alone cannot compete with MFCC features, MFDP can provide complementary information that result in improved speaker verification performance when both approaches are combined in score fusion, particularly in the case of shorter utterances.
Resumo:
The well-established under-frequency load shedding (UFLS) is deemed to be the last of effective remedial measures against a severe frequency decline of a power system. With the ever-increasing size of power systems and the extensive penetration of distributed generators (DGs) in power systems, the problem of developing an optimal UFLS strategy is facing some new challenges. Given this background, an optimal UFLS strategy for a distribution system with DGs and load static characteristics taken into consideration is developed. Based on the frequency and the rate of change of frequency, the presented strategy consists of several basic rounds and a special round. In the basic round, the frequency emergency can be alleviated by quickly shedding some loads. In the special round, the frequency security can be maintained, and the operating parameters of the distribution system can be optimized by adjusting the output powers of DGs and some loads. The modified IEEE 37-node test feeder is employed to demonstrate the essential features of the developed optimal UFLS strategy in the MATLAB/SIMULINK environment.
Resumo:
Term-based approaches can extract many features in text documents, but most include noise. Many popular text-mining strategies have been adapted to reduce noisy information from extracted features; however, text-mining techniques suffer from low frequency. The key issue is how to discover relevance features in text documents to fulfil user information needs. To address this issue, we propose a new method to extract specific features from user relevance feedback. The proposed approach includes two stages. The first stage extracts topics (or patterns) from text documents to focus on interesting topics. In the second stage, topics are deployed to lower level terms to address the low-frequency problem and find specific terms. The specific terms are determined based on their appearances in relevance feedback and their distribution in topics or high-level patterns. We test our proposed method with extensive experiments in the Reuters Corpus Volume 1 dataset and TREC topics. Results show that our proposed approach significantly outperforms the state-of-the-art models.
Resumo:
Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.
Resumo:
This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.
Resumo:
The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of 10^5, 10^2 and 10^0 sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of 10^-2, 10^-1 and 10^0 Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.
Resumo:
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
Bioacoustic monitoring has become a significant research topic for species diversity conservation. Due to the development of sensing techniques, acoustic sensors are widely deployed in the field to record animal sounds over a large spatial and temporal scale. With large volumes of collected audio data, it is essential to develop semi-automatic or automatic techniques to analyse the data. This can help ecologists make decisions on how to protect and promote the species diversity. This paper presents generic features to characterize a range of bird species for vocalisation retrieval. In the implementation, audio recordings are first converted to spectrograms using short-time Fourier transform, then a ridge detection method is applied to the spectrogram for detecting points of interest. Based on the detected points, a new region representation are explored for describing various bird vocalisations and a local descriptor including temporal entropy, frequency bin entropy and histogram of counts of four ridge directions is calculated for each sub-region. To speed up the retrieval process, indexing is carried out and the retrieved results are ranked according to similarity scores. The experiment results show that our proposed feature set can achieve 0.71 in term of retrieval success rate which outperforms spectral ridge features alone (0.55) and Mel frequency cepstral coefficients (0.36).
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.