936 resultados para Franklin Mine
Resumo:
Objective: To assess the symptoms of heat illness experienced by surface mine workers. Methods: Ninety-one surface mine workers across three mine sites in northern Australia completed a heat stress questionnaire evaluating their symptoms for heat illness. A cohort of 56 underground mine workers also participated for comparative purposes. Participants were allocated into asymptomatic, minor or moderate heat illness categories depending on the number of symptoms they reported. Participants also reported the frequency of symptom experience, as well as their hydration status (average urine colour). Results: Heat illness symptoms were experienced by 87 and 79 % of surface and underground mine workers, respectively (p = 0.189), with 81–82 % of the symptoms reported being experienced by miners on more than one occasion. The majority (56 %) of surface workers were classified as experiencing minor heat illness symptoms, with a further 31 % classed as moderate; 13 % were asymptomatic. A similar distribution of heat illness classification was observed among underground miners (p = 0.420). Only 29 % of surface miners were considered well hydrated, with 61 % minimally dehydrated and 10 % significantly dehydrated, proportions that were similar among underground miners (p = 0.186). Heat illness category was significantly related to hydration status (p = 0.039) among surface mine workers, but only a trend was observed when data from surface and underground miners was pooled (p = 0.073). Compared to asymptomatic surface mine workers, the relative risk of experiencing minor and moderate symptoms of heat illness was 1.5 and 1.6, respectively, when minimally dehydrated. Conclusions: These findings show that surface mine workers routinely experience symptoms of heat illness and highlight that control measures are required to prevent symptoms progressing to medical cases of heat exhaustion or heat stroke.
Resumo:
The sky is falling because the much-vaunted mining ‘boom’ is heading for ‘bust’. The fear-mongering by politicians, the industry and the media has begun in earnest. On ABC TV's 7:30 program on 22 August 2012, Federal Opposition Leader Tony Abbott blamed the Minerals Resource Rent Tax and the Carbon Tax for making ‘a bad investment environment much, much worse’ for the mining industry. The following day, Australia's Resources and Energy Minister Martin Ferguson told us on ABC radio that ‘the resources boom is over’. This must be true because, remember, we were warned to ‘Get ready for the end of the boom’ (David Uren, Economics Editor for The Australian 19 May 2012) due to the ‘Australian resource boom losing steam’ (David Winning & Robb M. Stewart, Wall Street Journal 21 August 2012). Besides, there is ‘unarguable evidence’ that Australia's production costs are ‘too expensive’ and ‘too uncompetitive’: mining magnate Gina Rinehart said so in a YouTube video placed on the Sydney Mining Club's website on 5 September 2012. Can this really be so? What is happening to the mining boom and to the people who depend upon it?
Resumo:
Objective: To explore psychosocial issues perceived to impact the mental health and well-being of resident (non-fly-in fly-out) mine workers at a local mine in regional Queensland. Design: A descriptive qualitative study using semistructured interviews. Setting: The research was conducted on-site at an opencut coal mine in regional Queensland. Participants: Ten miners (nine men) currently employed in workshop, production or supervisory roles. Main outcome measures: Self-reported issues affecting psychological well-being. Results: Participants’ occupation and the surrounding context appeared to have both positive and negative influences on their well-being. Overall findings could be grouped into four key themes: (i) the importance of relationships; (ii) the impact of lifestyle; (iii) work characteristics; and (iv) mental health attitudes. While not without strains on mental health, in general, participants reported that their current situation was superior to their previous mining jobs. This was attributed to close relationships among locally recruited workers, respect for management practices and rosters that allowed adequate sleep recovery and family time between shifts. Conclusions: This study is the first to examine mental health and well being in non-fly-in fly-out mining populations. It suggests that while some issues appear inherent in the mining occupation, personal and organisational support can help workers have a more positive workplace experience. Further work looking at more extensive comparisons over various mining contexts will greatly assist in the development of programs and support structures for rural and regional mine workers.
Resumo:
Intercalated Archean komatiites and dacites sit above a thick footwall dacite unit in the host rock succession at the Black Swan Nickel Mine, north of Kalgoorlie in the Yilgarn Craton, Western Australia. Both lithofacies occur in units that vary in scale from laterally extensive at the scale of the mine lease to localized, thin, irregular bodies, from > 100 m thick to only centimetres thick. Some dacites are only slightly altered and deformed, and are interpreted to post-date major deformation and alteration (late porphyries). However, the majority of the dacites display evidence of deformation, especially at contacts, and metamorphism, varying from silicification and chlorite alteration at contacts to pervasive low grade regional metamorphic alteration represented by common assemblages of chlorite, sericite and albite. Texturally, the dacites vary from entirely massive and coherent to partially brecciated to totally brecciated. Strangely, some dacites are coherent at the margins and brecciated internally. Breccia textures vary from cryptically defined, to blocky, closely packed, in situ jig-saw fit textures with secondary minerals in fractures between clasts, to more apparent matrix rich textures with round clast forms, giving apparent conglomerate textures. Some clast zones have multi-coloured clasts, giving the impression of varied provenance. Strangely however, all these textural variants have gradational relationships with each other, and no bedding or depositional structures are present. This indicates that all textures have an in situ origin. The komatiites are generally altered and pervasively carbonate veined. Preservation of original textures is patchy and local, but includes coarse adcumulate, mesocumulate, orthocumulate, crescumulate-harrisite and occasionally spinifex textures. Where original contacts between komatiites and dacites are preserved intact (i.e. not sheared or overprinted by alteration), the komatiites have chilled margins, whereas the dacites do not. The margins of the dacites are commonly silicified, and inclusions of dacite occur in komatiite, even at the top contacts of komatiite units, but komatiite clasts do not occur in the dacites. The komatiites therefore were emplaced as sills into the dacites, and the intercalated relationships are interpreted as intrusive. The brecciation and alteration in the dacites are interpreted as being largely due to hydraulic fracturing and alteration induced by contact metamorphic effects and hydrothermal alteration deriving from the intrusion of komatiites into the felsic pile. The absence of autobreccia and hyaloclastite textures in the dacites suggest that they were emplaced as an earlier intrusive (sill?) complex at a high level in the crust.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.
Resumo:
Gaudefroyite Ca4Mn3+3-x(BO3)3(CO3)(O,OH)3 is an unusual mineral containing both borate and carbonate groups and is found in the oxidation zones of manganese minerals, and it is black in color. Vibrational spectroscopy has been used to explore the molecular structure of gaudefroyite. Gaudefroyite crystals are short dipyramidal or prismatic with prominent pyramidal terminations, to 5 cm. Two very sharp Raman bands at 927 and 1076 cm-1are assigned to trigonal borate and carbonate respectively. Broad Raman bands at 1194, 1219 and 1281 cm-1 are attributed to BOH in-plane bending modes. Raman bands at 649 and 670 cm-1 are assigned to the bending modes of trigonal and tetrahedral boron. Infrared spectroscopy supports these band assignments. Raman bands in the OH stretching region are of a low intensity. The combination of Raman and infrared spectroscopy enables the assessment of the molecular structure of gaudefroyite to be made.
Resumo:
An area of property valuation that has attracted less attention than other property markets over the past 20 years has been the mining and extractive industries. These operations can range from small operators on leased or private land to multinational companies. Although there are a number of national mining standards that indicate the type of valuation methods that can be adopted for this asset class, these standards do not specify how or when these methods are best suited to particular mine operations. The RICS guidance notes and the draft IVSC guidance notes also advise the various valuations methods that can be used to value mining properties; but, again they do not specify what methods should be applied where and when. One of the methods supported by these standards and guidelines is the market approach. This paper will carry out an analysis of all mine, extractive industry and waste disposal sites sale transactions in Queensland Australia, a major world mining centre, to determine if a market valuation approach such as direct comparison is actually suitable for the valuation of a mine or extractive industry. The analysis will cover the period 1984 to 2011 and covers sale transactions for minerals, petroleum and gas, waste disposal sites, clay, sand and stone. Based on this analysis, the suitability of direct comparison for valuation purposes in this property sector will be tested.
Resumo:
Objective Dehydration and symptoms of heat illness are common among the surface mining workforce. This investigation aimed to determine whether heat strain and hydration status exceeded recommended limits. Methods Fifteen blast crew personnel operating in the tropics were monitored across a 12-hour shift. Heart rate, core body temperature, and urine-specific gravity were continuously recorded. Participants self-reported fluid consumption and completed a heat illness symptom inventory. Results Core body temperature averaged 37.46 +/- 0.13[degrees]C, with the group maximum 37.98 +/- 0.19[degrees]C. Mean urine-specific gravity was 1.024 +/- 0.007, with 78.6% of samples 1.020 or more. Seventy-three percent of workers reported at least one symptom of heat illness during the shift. Conclusions Core body temperature remained within the recommended limits; however, more than 80% of workers were dehydrated before commencing the shift, and tended to remain so for the duration.
Resumo:
Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).
Resumo:
In the coming decades, the mining industry faces the dual challenge of lowering both its water and energy use. This presents a difficulty since technological advances that decrease the use of one can increase the use of the other. Historically, energy and water use have been modelled independently, making it difficult to evaluate the true costs and benefits from water and energy improvements. This paper presents a hierarchical systems model that is able to represent interconnected water and energy use at a whole of site scale. In order to explore the links between water and energy four technologies advancements have been modelled: use of dust suppression additives, the adoption of thickened tailings, the transition to dry processing and the incorporation of a treatment plant. The results show a synergy between decreased water and energy use for dust suppression additives, but a trade-off for the others.
Resumo:
Over the past decade, the mining industry has come to recognise the importance of water both to itself and to others. Water accounting is a formalisation of this importance that quantifies and communicates how water is used by individual sites and the industry as a whole. While there are a number of different accounting frameworks that could be used within the industry, the Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry-led approach that provides a consistent representation of mine site water interactions regardless of their operational, social or environmental context that allows for valid comparisons between sites and companies. The WAF contains definitions of offsite water sources and destinations and onsite water use, a methodology for applying the definitions and a set of metrics to measure site performance. The WAF is comprised of two models: the Input-Output Model, which represents the interactions between sites and their surrounding community and the Operational Model, which represents onsite water interactions. Members of the MCA have recently adopted the WAF’s Input-Output Model to report on their external water interactions in their Australian operations with some adopting it on a global basis. To support this adoption, there is a need for companies to better understand how to implement the WAF in their own operations. Developing a water account is non-trivial, particularly for sites unfamiliar with the WAF or for sites with the need to represent unusual features. This work describes how to build a water account for a given site using the Input-Output Model with an emphasis on how to represent challenging situations.
Resumo:
A mine site water balance is important for communicating information to interested stakeholders, for reporting on water performance, and for anticipating and mitigating water-related risks through water use/demand forecasting. Gaining accuracy over the water balance is therefore crucial for sites to achieve best practice water management and to maintain their social license to operate. For sites that are located in high rainfall environments the water received to storage dams through runoff can represent a large proportion of the overall inputs to site; inaccuracies in these flows can therefore lead to inaccuracies in the overall site water balance. Hydrological models that estimate runoff flows are often incorporated into simulation models used for water use/demand forecasting. The Australian Water Balance Model (AWBM) is one example that has been widely applied in the Australian context. However, the calibration of AWBM in a mining context can be challenging. Through a detailed case study, we outline an approach that was used to calibrate and validate AWBM at a mine site. Commencing with a dataset of monitored dam levels, a mass balance approach was used to generate an observed runoff sequence. By incorporating a portion of this observed dataset into the calibration routine, we achieved a closer fit between the observed vs. simulated dataset compared with the base case. We conclude by highlighting opportunities for future research to improve the calibration fit through improving the quality of the input dataset. This will ultimately lead to better models for runoff prediction and thereby improve the accuracy of mine site water balances.