959 resultados para Fractional advection–dispersion equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN] We establish the existence and uniqueness of a positive and nondecreasing solution to a singular boundary value problem of a class of nonlinear fractional differential equation. Our analysis relies on a fixed point theorem in partially ordered sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 33C60, 35R11

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 26A33, 34A08, 34K37

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new discretization for the Hadamard fractional derivative, that simplifies the computations. We then apply the method to solve a fractional differential equation and a fractional variational problem with dependence on the Hadamard fractional derivative.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with fractional differential equations, with dependence on a Caputo fractional derivative of real order. The goal is to show, based on concrete examples and experimental data from several experiments, that fractional differential equations may model more efficiently certain problems than ordinary differential equations. A numerical optimization approach based on least squares approximation is used to determine the order of the fractional operator that better describes real data, as well as other related parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Researchers have engrossed fractional-order modeling because of its ability to capture phenomena that are nearly impossible to describe owing to its long-term memory and inherited properties. Motivated by the research in fractional modeling, a fractional-order prototype for a flexible satellite whose dynamics are governed by fractional differential equations is proposed for the first time. These relations are derived using fractional attitude dynamic description of rigid body simultaneously coupled with the fractional Lagrange equation that governs the vibration of the appendages. Two attitude controls are designed in the presence of the faults and uncertainties of the system. The first is the fractional-order feedback linearization controller, in which the stability of the internal dynamics of the system is proved. The second is the fractional-order sliding mode control, whose asymptotic stability is demonstrated using the quadratic Lyapunov function. Several nonlinear simulations are implemented to analyze the performance of the proposed controllers.