998 resultados para Fourier, Ch.
Resumo:
We present an image quality assessment and enhancement method for high-resolution Fourier-Domain OCT imaging like in sub-threshold retina therapy. A Maximum-Likelihood deconvolution algorithm as well as a histogram-based quality assessment method are evaluated.
Resumo:
Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.
Resumo:
The electronic structure of atomically precise armchair graphene nanoribbons of width N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). We record the standing waves in the local density of states of finite ribbons as a function of sample bias and extract the dispersion relation of frontier electronic states by Fourier transformation. The wave-vector-dependent contributions from these states agree with density functional theory calculations, thus enabling the unambiguous assignment of the states to the valence band, the conduction band, and the next empty band with effective masses of 0.41±0.08me,0.40±0.18me, and 0.20±0.03me, respectively. By comparing the extracted dispersion relation for the conduction band to corresponding height-dependent tunneling spectra, we find that the conduction band edge can be resolved only at small tip-sample separations and has not been observed before. As a result, we report a band gap of 2.37±0.06 eV for 7-AGNRs adsorbed on Au(111).
Resumo:
We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.
Resumo:
In this study, biometric and structural engineering tool have been used to examine a possible relationship within Chuaria–Tawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of Chuaria–Tawuia complex. Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to Chuaria–Tawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria. The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.
Resumo:
Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.
Resumo:
The statutory derivative action was introduced in Australia in 2000. This right of action has been debated in the literature and introduced in a number of other jurisdictions as well. However, it is by no means clear that all issues have been resolved despite its operation in Australia for over 10 years. This article considers the application of Pt 2F.1A of the Corporations Act to companies in liquidation under Ch 5. It demonstrates that the application involves consideration of not only proper statutory interpretation but also policy matters around the role and the supervision by the court of a liquidator once a company has entered liquidation.
Resumo:
Denaturation of tissues can provide a unique biological environment for regenerative medicine application only if minimal disruption of their microarchitecture is achieved during the decellularization process. The goal is to keep the structural integrity of such a construct as functional as the tissues from which they were derived. In this work, cartilage-on-bone laminates were decellularized through enzymatic, non-ionic and ionic protocols. This work investigated the effects of decellularization process on the microarchitecture of cartiligous extracellular matrix; determining the extent of how each process deteriorated the structural organization of the network. High resolution microscopy was used to capture cross-sectional images of samples prior to and after treatment. The variation of the microarchitecture was then analysed using a well defined fast Fourier image processing algorithm. Statistical analysis of the results revealed how significant the alternations among aforementioned protocols were (p < 0.05). Ranking the treatments by their effectiveness in disrupting the ECM integrity, they were ordered as: Trypsin> SDS> Triton X-100.
Resumo:
In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).