518 resultados para Formaldehyde


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde (CH2O) the most simple and reactive of all aldehydes, is a colorless, reactive and readily polymerizing gas at normal temperature. It has a pungent, suffocating odour that is recognized by most human subjects at concentrations below 1 ppm. According to the Report on Carcinogens, formaldehyde (FA) ranks 25th in the overall U.S. chemical production with more than 11 billion pounds (5 million tons) produced each year. Is an important industrial compound that is used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives. It has also applications as a disinfectant, preservative and is used in cosmetics. Estimates of the number of persons who are occupationally exposed to FA indicate that, at least at low levels, may occur in a wide variety of industries. The occupational settings with most extensive use of formaldehyde is in the production of resins and in anatomy and pathology laboratories. Several studies reported a carcinogenic effect in humans after inhalation of FA, in particular an increased risk for nasopharyngeal cancer. Nowadays, the International Agency for Research on Cancer (IARC) classifies FA as carcinogenic to humans (group 1), on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferatin cultured mammalian cells. A variety of evidence suggests that the primary DNA alterations after FA exposure are DNA-protein crosslinks (DPX). Incomplete repair of DPX can lead to the formation of mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde (CH2O), the most simple and reactive of all aldehydes, is colorless, and readily polymerizing gas at normal temperature. The most extensive use is in production of resins and has an important application as a disinfectant and preservative, reason why relevant workplace exposure may also occur in pathology and anatomy laboratories and in mortuaries. A study was carried out in Portugal, in a formaldehyde production resins factory and in 10 pathology and anatomy laboratories. It was applied a risk assessment methodology based on Queensland University proposal that permitted to perform risk assessment for each activity developed in a work station. This methodology was applied in 83 different activities developed in the laboratories and in 18 activities of the factory. Also, Micronucleus Test was performed in lymphocytes from 30 factory workers and 50 laboratories workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde, also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. To perform exposure assessment is necessary define exposure groups and in this occupational setting the technicians and pathologists are the most important groups. In the case of formaldehyde, it seems that health effects are more related with peak exposures than with exposure duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde was the first air pollutant, which already in the 1970s emerged as a specifically non-industrial indoor air quality problem. Yet formaldehyde remained an indoor air quality issue and the formaldehyde level in residential indoor air is among the highest of any indoor air contaminant. Formaldehyde concentrations in 4 different indoor settings (schools, office buildings, new dwellings and occupied dwellings) in Portugal were measured using Photo Ionization Detection (PID) equipment (11,7 eV lamps). All the settings presented results higher than the reference value proposed by Portuguese legislation. Furthermore, occupied dwellings showed 3 units with results above the reference. We could conclude that formaldehyde presence is a reality in monitored indoor settings. Concentration levels are higher than the Portuguese reference value for indoor settings and these can indicate health problems for occupants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde (CH2O), the most simple and reactive aldehyde, is a colorless, reactive and readily polymerizing gas at room temperature (National Toxicology Program [NTP]. It has a pungent suffocating odor that is recognized by most human subjects at concentrations below 1 ppm. Aleksandr Butlerov synthesized the chemical in 1859, but it was August Wilhelm von Hofmann who identified it as the product formed from passing methanol and air over a heated platinum spiral in 1867. This method is still the basis for the industrial production of formaldehyde today, in which methanol is oxidized using a metal catalyst. By the early 20th century, with the explosion of knowledge in chemistry and physics, coupled with demands for more innovative synthetic products, the scene was set for the birth of a new material–plastics. According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Formaldehyde annual production rises up to 21 million tons worldwide and it has increased in China with 7.5 million tons produced in 2007. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Commercially, formaldehyde is manufactured as an aqueous solution called formalin, usually containing 37% by weight of dissolved formaldehyde. This chemical is present in all regions of the atmosphere arising from the oxidation of biogenic and anthropogenic hydrocarbons. Formaldehyde concentration levels range typically from 2 to 45 ppbV (parts per billion in a given volume) in urban settings that are mainly governed by primary emissions and secondary formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A replicate evaluation of increased micronucleus (MN) frequencies in peripheral lymphocytes of workers occupationally exposed to formaldehyde (FA) was undertaken to verify the observed effect and to determine scoring variability. May–Grünwald–Giemsa-stained slides were obtained from a previously performed cytokinesis-block micronucleus test (CBMNT) with 56 workers in anatomy and pathology laboratories and 85 controls. The first evaluation by one scorer (scorer 1) had led to a highly significant difference between workers and controls (3.96 vs 0.81 MN per 1000 cells). The slides were coded before re-evaluation and the code was broken after the complete re-evaluation of the study. A total of 1000 binucleated cells (BNC) were analysed per subject and the frequency of MN (in ‰) was determined. Slides were distributed equally and randomly between two scorers, so that the scorers had no knowledge of the exposure status. Scorer 2 (32 exposed, 36 controls) measured increased MN frequencies in exposed workers (9.88 vs 6.81). Statistical analysis with the two-sample Wilcoxon test indicated that this difference was not significant (p = 0.17). Scorer 3 (20 exposed, 46 controls) obtained a similar result, but slightly higher values for the comparison of exposed and controls (19.0 vs 12.89; p = 0.089). Combining the results of the two scorers (13.38 vs 10.22), a significant difference between exposed and controls (p = 0.028) was obtained when the stratified Wilcoxon test with the scorers as strata was applied. Interestingly, the re-evaluation of the slides led to clearly higher MN frequencies for exposed and controls compared with the first evaluation. Bland–Altman plots indicated that the agreement between the measurements of the different scorers was very poor, as shown by mean differences of 5.9 between scorer 1 and scorer 2 and 13.0 between scorer 1 and scorer 3. Calculation of the intra-class correlation coefficient (ICC) revealed that all scorer comparisons in this study were far from acceptable for the reliability of this assay. Possible implications for the use of the CBMNT in human biomonitoring studies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde (FA) ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to FA occupationally. Recently, based on the correlation with nasopharyngeal cancer in humans, the International Agency for Research on Cancer (IARC) confirmed the classification of FA as a Group I substance. Considering the epidemiological evidence of a potential association with leukemia, the IARC has concluded that FA can cause this lymphoproliferative disorder. Our group has developed a method to assess the exposure and genotoxicity effects of FA in two different occupational settings, namely FAbased resins production and pathology and anatomy laboratories. For exposure assessment we applied simultaneously two different techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection Equipment with simultaneously video recording. Genotoxicity effects were measured by cytokinesis-blocked micronucleus assay in peripheral blood lymphocytes and by micronucleus test in exfoliated oral cavity epithelial cells, both considered target cells. The two exposure assessment techniques show that in the two occupational settings peak exposures are still occurring. There was a statistical significant increase in the micronucleus mean of epithelial cells and peripheral lymphocytes of exposed individuals compared with controls. In conclusion, the exposure and genotoxicity effects assessment methodologies developed by us allowed to determine that these two occupational settings promote exposure to high peak FA concentrations and an increase in the micronucleus mean of exposed workers. Moreover, the developed techniques showed promising results and could be used to confirm and extend the results obtained by the analytical techniques currently available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods - A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results - Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive correlation was found between duration of occupational exposure to formaldehyde (years of exposure) and micronucleus frequency in peripheral blood lymphocytes (r = 0.401; p < 0.001) and in epithelial cells (r = 0.209; p < 0.01). Conclusions - The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the cause of the observed genotoxic endpoint effects. The association of these cytogenetic effects with formaldehyde exposure gives important information to risk assessment process and may also be used to assess health risks for exposed workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industrial manufacturing of metallic objects results in a high level of foundry waste sands that may contain toxic compounds such as formaldehyde. The formaldehyde content of foundry waste sands was evaluated by liquid chromatography. Samples were collected during various steps of the industrial processes. Results showed that the phenolic alkaline process generated waste sands with higher formaldehyde content than the furanic process; the highest value was 7.6×10-3% (w/w). In this work, formaldehyde content decreased with time in all of the samples studied, revealing that most formaldehyde was released to the occupational environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde is a toxic component that is present in foundry resins. Its quantification is important to the characterisation of the resin (kind and degradation) as well as for the evaluation of free contaminants present in wastes generated by the foundry industry. The complexity of the matrices considered suggests the need for separative techniques. The method developed for the identification and quantification of formaldehyde in foundry resins is based on the determination of free carbonyl compounds by derivatization with 2,4-dinitrophenylhydrazine (DNPH), being adapted to the considered matrices using liquid chromatography (LC) with UV detection. Formaldehyde determinations in several foundry resins gave precise results. Mean recovery and R.S.D. were, respectively, >95 and 5%. Analyses by the hydroxylamine reference method gave comparable results. Results showed that hydroxylamine reference method is applicable just for a specific kind of resin, while the developed method has good performance for all studied resins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide formaldehyde is manipulated with diverse usage properties, since industrial purposes to health laboratory objectives, representing the economic importance of this chemical agent. Therefore, many people are exposed to formaldehyde environmentally and/or occupationally. Considering the latter, there was recommended occupational exposure limits based on threshold mechanisms, limit values and indoor guidelines. Formaldehyde is classified by the International Agency for Cancer Research (IARC) as carcinogenic to humans (group 1), since a wide range of epidemiological studies in occupational exposure settings have suggested possible links between the concentration and duration of exposure and elevated risks of nasopharyngeal cancer, and others cancers, and more recently, with leukemia. Although there are different classifications, such as U.S. EPA that classified formaldehyde as a B1 compound, probable human carcinogen under the conditions of unusually high or prolonged exposure, on basis of limited evidence in humans but with sufficient evidence in animals. Formaldehyde genotoxicity is well-known, being a direct-acting genotoxic compound positively associated for almost all genetic endpoints evaluated in bacteria, yeast, fungi, plants, insects, nematodes, and cultured mammalian cells. There are many human biomonitoring studies that associate formaldehyde occupational exposure to genomic instability, and consequently possible health effects. Besides the link with cancer, also other pathologies and symptoms are associated with formaldehyde exposure, namely respiratory disorders such as asthma, and allergic contact dermatitis. Nowadays, there are efforts to reduce formaldehyde exposure, namely indoor. Europe and United States developed more strict regulation regarding formaldehyde emissions from materials containing this agent. Despite the regulations and restrictions, formaldehyde still continues to be difficult to eliminate or substitute, being biomonitoring an important tool to control possible future health effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT – Background: According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods: A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results: Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive correlation was found between duration of occupational exposure to formaldehyde (years of exposure) and micronucleus frequency in peripheral blood lymphocytes (r = 0.401; p < 0.001) and in epithelial cells (r = 0.209; p < 0.01). Conclusions: The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the cause of the observed genotoxic endpoint effects. The association of these cytogenetic effects with formaldehyde exposure gives important information to risk assessment process and may also be used to assess health risks for exposed worker

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides polyurethanes and polyesters, phenolic and epoxy resins are the most prominent applications for technical lignins in thermosetting materials. To evaluate the potential application of lignin raw materials in phenol formaldehyde and epoxy resins, three types of alkaline lignins were characterized in terms of their structures and thermal properties. The lignin samples analyzed were kraft lignin (LIG-1), soda–rice straw lignin (LIG-2), and soda-wheat straw lignin (LIG-3). FTIR and 1H-NMR methods were used to determine their structure. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution (MWD). Differential scanning calorimetry (DSC) was used to measure the glass transition temperature (Tg), and thermogravimetric analysis (TGA) to determine the thermal stability of lignin samples. Results showed that kraft lignin (LIG-1) has moderate hydroxyl-group content, is rich in G-type units, and has good thermal stability. These properties make it more suitable for direct use in phenol formaldehyde resins, and it is therefore a good raw material for this purpose. The alkaline soda-rice straw lignin (LIG-2) with a high hydroxyl-group content and excellent thermal stability is most suited to preparing lignin-based epoxy resin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong platelet activation results in a redistribution of negatively charged phospholipids from the cytosolic to the outer leaflet of the cellular membrane. Annexin V has a high affinity to negatively charged phospholipids and can be used to identify procoagulant platelets. Formaldehyde fixation can cause factitious Annexin V binding. Our aim was to evaluate a method for fixing platelets avoiding additional Annexin V binding. We induced expression of negatively charged phospholipids on the surface of a fraction of platelets by combined activation with convulxin and thrombin in the presence of Annexin V-fluorescein isothiocyanate and calcium. Aliquots of resting and activated platelets were fixed with a low concentration, calcium-free formaldehyde solution. Both native platelets and fixed platelets were analyzed by flow cytometry immediately and after a 24-h storage at 4°C. We observed that the percentage of Annexin V positive resting platelets ranged from 1.5 to 9.3% for the native samples and from 0.4 to 12.8% for the fixed samples (P=0.706, paired t-test). The amount of Annexin V positive convulxin/thrombin activated platelets varied from 12.9 to 35.4% without fixation and from 15.3 to 36.3% after formalin fixation (P=0.450). After a 24-h storage at 4°C, Annexin V positive platelets significantly increased both in the resting and in the convulxin/thrombin activated samples of native platelets (both P<0.001), while results for formalin fixed platelets did not differ from baseline values (P=0.318 for resting fixed platelets; P=0.673 for activated fixed platelets). We conclude that platelet fixation with a low concentration, calcium-free formaldehyde solution does not alter the proportion of Annexin V positive platelets. This method can be used to investigate properties of procoagulant platelets by multicolor flow-cytometric analysis requiring fixation steps.