994 resultados para Forest hydrology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased atmospheric deposition of inorganic nitrogen (N) may lead to increased leaching of nitrate (NO3-) to surface waters. The mechanisms responsible for, and controls on, this leaching are matters of debate. An experimental N addition has been conducted at Gardsjon, Sweden to determine the magnitude and identify the mechanisms of N leaching from forested catchments within the EU funded project NITREX. The ability of INCA-N, a simple process-based model of catchment N dynamics, to simulate catchment-scale inorganic N dynamics in soil and stream water during the course of the experimental addition is evaluated. Simulations were performed for 1990-2002. Experimental N addition began in 1991. INCA-N was able to successfully reproduce stream and soil water dynamics before and during the experiment. While INCA-N did not correctly simulate the lag between the start of N addition and NO 2 3 breakthrough, the model was able to simulate the state change resulting from increased N deposition. Sensitivity analysis showed that model behaviour was controlled primarily by parameters related to hydrology and vegetation dynamics and secondarily by in-soil processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wildfires can induce or enhance soil water repellency under a range of vegetation communities. According to mainly USA-based laboratory studies, repellency is eliminated at a maximum soil temperature (T) of 280–400°C. Knowledge of T reached during a wildfire is important in evaluating post-fire soil physical properties, fertility and seedbed status. T is, however, notoriously difficult to ascertain retrospectively and often based on indicative observations with a large potential error. Soils under fire-prone Australian eucalypt forests tend to be water repellent when dry or moderately moist even if long unburnt. This study aims to quantify the temperature of water repellency destruction for Australian topsoil material sampled under three sites with contrasting eucalypt cover (Eucalyptus sieberi, E. ovata and E. baxteri). Soil water repellency was present prior to heating in all samples, increased during heating, but was abruptly eliminated at a specific T between 260 and 340°C. Elimination temperature varied somewhat between samples, but was found to be dependent on heating duration, with longest duration resulting in lowest elimination temperature. Results suggest that post-fire water repellency may be used as an aid in hindcasting soil temperature reached during the passage of a fire within repellency-prone environments.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The River Murray, Australia, is a highly regulated river from which almost 80% of mean annual flow is removed for human use, primarily irrigated agriculture. Consequent changes to the pattern and volume of river flow are reflected in floodplain hydrology and, therefore, the wetting/drying patterns of floodplain wetlands. To explore the significance of these changes, macroinvertebrate samples were compared between permanent and temporary wetlands following experimental flooding in a forested floodplain of the River Murray. Weekly samples from two permanent wetlands and four associated temporary sites were used to track changes in macroinvertebrate assemblage composition. Non-metric multidimensional scaling was used to ordinate the macroinvertebrate data, indicating consistent differences between the biota of permanent and temporary wetlands and between the initial and later assemblages in the temporary sites. There were marked changes over time, but little sign that the permanent and temporary assemblages were becoming more alike over the 25-week observation period. The apparent heterogeneity of these systems is of particular importance in developing river management plans which are likely to change flooding patterns. Such plans need to maintain a mosaic of wetland habitats if floodplain biodiversity is to be supported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an attempt to estimate the soil-water transit time using the variation in 18O values, a statistical model was used. This model is based on linear regression analysis applied to the values observed for soil water and rain water. The time obtained from these correlations represents the mean time necessary for the water to run from one collecting point to the next.-from Authors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite important progress on Amazonian floodplain research, the flooded forest of the Negro River igapó has been little investigated. In particular, no study has previously focused the linkage between fluvial geomorphology and the floristic variation across the course of the river. In this paper we describe and interpret relations between igapó forest, fluvial geomorphology and the spatial evolution of the igapó forest through the Holocene. Therefore, we investigate the effect of geomorphological units of the floodplain and channel patterns on tree diversity, composition and structural parameters of the late-successional igapó forest. Our results show that sites sharing almost identical flooding regime, exhibit variable tree assemblages, species richness and structural parameters such as basal area, tree density and tree heights, indicating a trend in which the geomorphologic styles seem to partially control the organization of igapó's tree communities. This can be also explained by the high variability of well-developed geomorphologic units in short distances and concentrated in small areas. In this dynamic the inputs from the species pool of tributary rivers play a crucial role, but also the depositional and erosional processes associated with the evolution of the floodplain during the Holocene may control floristic and structural components of the igapó forests. These results suggest that a comprehensive approach integrating floristic and geomorphologic methods is needed to understand the distribution of the complex vegetation patterns in complex floodplains such as the igapó of the Negro River. This combination of approaches may introduce a better comprehension of the temporal and spatial evolutionary analysis and a logic rationale to understand the vegetation distribution and variability in function of major landforms, soil distributions and hydrology. Thus, by integrating the past into macroecological analyses will sharpen our understanding of the underlying forces for contemporary floristic patterns along the inundation forests of the Negro River. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed. This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6% of rainfall was collected as throughfall and 0.3% as stemflow, while in soybean fields with two-month old plants, 46.2% of rainfall was collected as throughfall and 9.0% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios were derived from ten regional climate models from the ENSEMBLES project. Their respective temperature and precipitation changes between the scenario period (2074–2095) and the control period (1984–2005) were used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest) was assessed through an analysis of variance (ANOVA). Altogether, 15 mountainous catchments in Switzerland were analysed, exhibiting different degrees of glaciation during the control period (0–51%) and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area). The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as changes in evaporation or soil moisture are concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchments with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in this study, though, is the climate scenario and it is highly recommended to apply an ensemble of climate scenarios in the impact studies. The results presented here are valid for the climatic region they were tested for, i.e., a humid, mid-latitude mountainous environment. They might be different for regions where the evaporation is a major component of the water balance, for example. Nevertheless, a hydrological climate-impact study that assesses the additional impacts of forest and glacier change is new so far and provides insight into the question whether or not it is necessary to account for land cover changes as part of climate change impacts on hydrological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"August 1997."