888 resultados para Forecasting accuracy


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forecasting tourism demand is crucial for management decisions in the tourism sector. Estimating a vector autoregressive (VAR) model for monthly visitor arrivals disaggregated by three entry points in Cambodia for the years 2006–2015, I forecast the number of arrivals for years 2016 and 2017. The results show that the VAR model fits well with the data on visitor arrivals for each entry point. Ex post forecasting shows that the forecasts closely match the observed data for visitor arrivals, thereby supporting the forecasting accuracy of the VAR model. Visitor arrivals to Siem Reap and Phnom Penh airports are forecast to increase steadily in future periods, with varying fluctuations across months and origin countries of foreign tourists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study examines the forecasting accuracy of alternative vector autoregressive models each in a seven-variable system that comprises in turn of daily, weekly and monthly foreign exchange (FX) spot rates. The vector autoregressions (VARs) are in non-stationary, stationary and error-correction forms and are estimated using OLS. The imposition of Bayesian priors in the OLS estimations also allowed us to obtain another set of results. We find that there is some tendency for the Bayesian estimation method to generate superior forecast measures relatively to the OLS method. This result holds whether or not the data sets contain outliers. Also, the best forecasts under the non-stationary specification outperformed those of the stationary and error-correction specifications, particularly at long forecast horizons, while the best forecasts under the stationary and error-correction specifications are generally similar. The findings for the OLS forecasts are consistent with recent simulation results. The predictive ability of the VARs is very weak.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since wind has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safety and economics of wind energy utilization. In this paper, we investigate a combination of numeric and probabilistic models: one-day-ahead wind power forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical Weather Prediction (NWP) model. Firstly the wind speed data from NWP was corrected by a GP. Then, as there is always a defined limit on power generated in a wind turbine due the turbine controlling strategy, a Censored GP was used to model the relationship between the corrected wind speed and power output. To validate the proposed approach, two real world datasets were used for model construction and testing. The simulation results were compared with the persistence method and Artificial Neural Networks (ANNs); the proposed model achieves about 11% improvement in forecasting accuracy (Mean Absolute Error) compared to the ANN model on one dataset, and nearly 5% improvement on another.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä diplomityössä tutkittiin kysynnän ennustamista Vaasan & Vaasan Oy:n tuotteille. Ensin työssä perehdyttiin ennustamiseen ja sen tarjoamiin mahdollisuuksiin yrityksessä. Erityisesti kysynnän ennustamisesta saatavat hyödyt käytiin läpi. Kysynnän ennustamisesta haettiin ratkaisua erityisesti ongelmiin työvuorosuunnittelussa.Työssä perehdyttiin ennustemenetelmiin liittyvään kirjallisuuteen, jonka oppien perusteella tehtiin koe-ennustuksia yrityksen kysynnän historiadatan avulla. Koe-ennustuksia tehtiin kuudelle eri Turun leipomon koe-tuotteelle. Ennustettavana aikavälinä oli kahden viikon päiväkohtainen kysyntä. Tämän aikavälin erityisesti peruskysynnälle etsittiin ennustetarkkuudeltaan parasta kvantitatiivista ennustemenetelmää. Koe-ennustuksia tehtiin liukuvilla keskiarvoilla, klassisella aikasarja-analyysillä, eksponentiaalisen tasoituksen menetelmällä, Holtin lineaarisella eksponenttitasoituksen menetelmällä, Wintersin kausittaisella eksponentiaalisella tasoituksella, autoregressiivisillä malleilla, Box-Jenkinsin menetelmällä ja regressioanalyysillä. Myös neuroverkon opettamista historiadatalla ja käyttämistä ongelman ratkaisun apuna kokeiltiin.Koe-ennustuksien tulosten perusteella ennustemenetelmien toimintaa analysoitiin jatkokehitystä varten. Ennustetarkkuuden lisäksi arvioitiin mallin yksinkertaisuutta, helppokäyttöisyyttä ja sopivuutta yrityksen monien tuotteiden ennustamiseen. Myös kausivaihteluihin, trendeihin ja erikoispäiviin kiinnitettiin huomiota. Ennustetarkkuuden huomattiin parantuvan selvästi peruskysyntää ennustettaessa, jos ensin historiadata esikäsittelemällä puhdistettiin erikoispäivistä ja –viikoista.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The IPD Annual Index is the largest and most comprehensive Real Estate market index available in the UK Such coverage however inevitably leads to delays in publication. In contrast there are a number of quarterly and monthly indices which are published within days of the year end but which lack the coverage in terms of size and numbers of properties. This paper analyses these smaller but more timely indices to see whether such indices can be used to predict the performance of the IPD Annual Index. Using a number of measures of forecasting accuracy it is shown that the smaller indices provide unbiased and efficient predictions of the IPD Annual Index. Such indices also significantly outperform a naive no-change model. Although no one index performs significantly better than the others. The more timely indices however do not perfectly track the IPD Annual Index. As a result any short run predictions of performance will be subject to a degree of error. Nevertheless the more timely indices, although lacking authoritative coverage, provide a valuable service to investors giving good estimates of Real Estates performance well before the publication of the IPD Annual Index.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regular vine copulas are multivariate dependence models constructed from pair-copulas (bivariate copulas). In this paper, we allow the dependence parameters of the pair-copulas in a D-vine decomposition to be potentially time-varying, following a nonlinear restricted ARMA(1,m) process, in order to obtain a very flexible dependence model for applications to multivariate financial return data. We investigate the dependence among the broad stock market indexes from Germany (DAX), France (CAC 40), Britain (FTSE 100), the United States (S&P 500) and Brazil (IBOVESPA) both in a crisis and in a non-crisis period. We find evidence of stronger dependence among the indexes in bear markets. Surprisingly, though, the dynamic D-vine copula indicates the occurrence of a sharp decrease in dependence between the indexes FTSE and CAC in the beginning of 2011, and also between CAC and DAX during mid-2011 and in the beginning of 2008, suggesting the absence of contagion in these cases. We also evaluate the dynamic D-vine copula with respect to Value-at-Risk (VaR) forecasting accuracy in crisis periods. The dynamic D-vine outperforms the static D-vine in terms of predictive accuracy for our real data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel methodology to infer parameters of probabilistic models whose output noise is a Student-t distribution. The method is an extension of earlier work for models that are linear in parameters to nonlinear multi-layer perceptrons (MLPs). We used an EM algorithm combined with variational approximation, the evidence procedure, and an optimisation algorithm. The technique was tested on two regression applications. The first one is a synthetic dataset and the second is gas forward contract prices data from the UK energy market. The results showed that forecasting accuracy is significantly improved by using Student-t noise models.