980 resultados para Forecast models
Resumo:
Facing the problems that Dagang region of Huanghua Depression has high exploration degree and its remaining resource potential and structure are not clear, the theory of Petroleum Accumulation System (PAS) is applied to divide and evaluate the oil/gas systems quantitatively. Then, the petroleum accumulation systems are taken as units to forecast and analyse the oil/gas resources and their structure using statistical methods of sampling analysis of discovery process model and generalized pareto distribution model. The exploration benefit of the unit is estimated using exploration simulation methods. On the basis of the above study, the resource potential of Huanghua Depression is discussed.Huanghua Depression can be diveded into four petroleum accumulation systems, i.e. North PAS5 Middle Qibei PAS, Middle Qinan PAS and South PAS. Each PAS can be diveded futher into several sub- PASs. Using the basic princple of Analytical Hierarchy Process, the method of quantitative evaluation of PAS is established. Then the elements and maturity of PAS are evaluated quantitatively.Taking migration and accumulation units and sub-PASs as prediction units, sampling analysis of discovery process model and generalized pareto distribution model are applied comparatively to forecast the resource structure of eight migration and accumulation units in six PASs of medium-high exploration degree. The results of these two methods are contrasted and analyzed. An examination of X2 data of these two models from exploration samples shows that generalized pareto distribution model is more effective than sampling analysis of discovery process model in Huanghua Depression. It is concluded that minimum and maximum size of reservoir and discovery sequence of reservoirs are the sensitive parameters of these two methods.Aiming at the difficult problem of forecast in low exploration degree, by analysis of relativity between resource parameters and their possible influential geological factors, forecast models for resource parameters were established by liner regressing. Then the resource structure is forecasted in PASs of low exploration degree.Based on the forecast results, beginning with the analysis of exploration history and benefit variation, the exploration benefit variation of the above PASs is fitted effectively using exploration simulation method. The single well exploration benefit of remaining oil resource is also forecasted reasonably.The results of resource forecast show that the total oil resources ofHuanghua Depression amount to 2.28 b illion ton. By the end o f 2 003, the accumulative total proved oil reserve is 0.90 billion ton and the remaining oil resources is 1.38 billion ton. The remaining oil resource is concentrated in Kongdian-Dengmingshi, Banqiao-Beidagang, Qidong-Yangerzhuang and Baidong-Qizhong sub-PASs.
Resumo:
Guangxi Longtan Hydropower Station is not only a representative project of West Developing and Power Transmission from West to East in China, but also the second Hydropower Station to Three Gorges Project which is under construction in China. There are 770 X 104m3 creeping rock mass on the left bank slope in upper reaches, in which laid 9 water inlet tunnels and some underground plant buildings. Since the 435m high excavated slope threatens the security of the Dam, its deformation and stability is of great importance to the power station.Based on the Autodesk Map2004, Longtan Hydropower Station Monitoring Information System on Left Bank has been basically finished on the whole. Integrating the hydropower station monitoring information into Geographic Information System(GIS) environment, managers and engineers can dynamically gain the deformation information of the slop by query the symbols. By this means, designers can improve the correctness of analysis, and make a strategic and proper decision. Since the system is beneficial to effectively manage the monitoring-data, equitably save the cost of design and safe construction, and decrease the workload of the engineers, it is a successful application to the combination of hydropower station monitoring information management and computer information system technology.At the same time, on the basis of the geological analysis and rock mass toppling deformation and failure mechanism analysis of Longtan engineering left bank slope, the synthetic space-time analysis and influence factors analysis on the surface monitoring data and deep rock mass monitoring data of A-zone on left bank slope are carried on. It shows that the main intrinsic factor that effects the deformation of Zone A is the argillite limestone interbedding toppling structure, and its main external factors are rain and slope excavation. What's more, Degree of Reinforcement Demand(DRD) has been used to evaluate the slop reinforce effect of Zone A on left bank according to the Engineering Geomechanics-mate-Synthetics(EGMS). The result shows that the slop has been effective reinforced, and it is more stable after reinforce.At last, on the basis of contrasting with several forecast models, a synthetic forecast GRAV model has been presented and used to forecast the deformation of zone A on left bank in generating electricity period. The result indicates that GRAV model has good forecast precision, strong stability, and practical valuable reliability.
Resumo:
High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006–2010.These basidiospores are known to cause sensitization due to
the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximumtemperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0–49 s m−3), moderate(50–99 s m−3), high (100–149 s m−3) and very high (150
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
Cloud radar and lidar can be used to evaluate the skill of numerical weather prediction models in forecasting the timing and placement of clouds, but care must be taken in choosing the appropriate metric of skill to use due to the non- Gaussian nature of cloud-fraction distributions. We compare the properties of a number of different verification measures and conclude that of existing measures the Log of Odds Ratio is the most suitable for cloud fraction. We also propose a new measure, the Symmetric Extreme Dependency Score, which has very attractive properties, being equitable (for large samples), difficult to hedge and independent of the frequency of occurrence of the quantity being verified. We then use data from five European ground-based sites and seven forecast models, processed using the ‘Cloudnet’ analysis system, to investigate the dependence of forecast skill on cloud fraction threshold (for binary skill scores), height, horizontal scale and (for the Met Office and German Weather Service models) forecast lead time. The models are found to be least skillful at predicting the timing and placement of boundary-layer clouds and most skilful at predicting mid-level clouds, although in the latter case they tend to underestimate mean cloud fraction when cloud is present. It is found that skill decreases approximately inverse-exponentially with forecast lead time, enabling a forecast ‘half-life’ to be estimated. When considering the skill of instantaneous model snapshots, we find typical values ranging between 2.5 and 4.5 days. Copyright c 2009 Royal Meteorological Society
Resumo:
Recent extreme precipitation events have caused widespread flooding to the UK. The prediction of the intensity of such events in a warmer climate is important for adaption strategies against future events. This study highlights the importance of using high-resolution models to predict these events. Using a high-resolution GCM it is shown that extreme precipitation events are predicted to become more frequent under the IPCC A1B warming scenario. It is also shown that current forecast models have difficulty in predicting the location, timing and intensity of small scale precipitation in areas with significant orography.
Resumo:
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.
Resumo:
As wind generation increases, system impact studies rely on predictions of future generation and effective representation of wind variability. A well-established approach to investigate the impact of wind variability is to simulate generation using observations from 10 m meteorological mast-data. However, there are problems with relying purely on historical wind-speed records or generation histories: mast-data is often incomplete, not sited at a relevant wind generation sites, and recorded at the wrong altitude above ground (usually 10 m), each of which may distort the generation profile. A possible complimentary approach is to use reanalysis data, where data assimilation techniques are combined with state-of-the-art weather forecast models to produce complete gridded wind time-series over an area. Previous investigations of reanalysis datasets have placed an emphasis on comparing reanalysis to meteorological site records whereas this paper compares wind generation simulated using reanalysis data directly against historic wind generation records. Importantly, this comparison is conducted using raw reanalysis data (typical resolution ∼50 km), without relying on a computationally expensive “dynamical downscaling” for a particular target region. Although the raw reanalysis data cannot, by nature of its construction, represent the site-specific effects of sub-gridscale topography, it is nevertheless shown to be comparable to or better than the mast-based simulation in the region considered and it is therefore argued that raw reanalysis data may offer a number of significant advantages as a data source.
Resumo:
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.
Resumo:
A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (Ttot). The way Ttot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in Ttot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to Ttot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of Ttot between the two schemes appears to play an important role at all time scales.
Resumo:
During the summer and autumn 2015, El Niño conditions in the east and central Pacific have strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during this summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work providing information from seasonal forecast models to give a more detailed monthly outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of a monthly outlook column. This monthly outlook is an indication of the average likely conditions for that month and region and is not a definite prediction of weather impacts.
Resumo:
During the summer and autumn 2015, El Niño conditions in the east and central Pacific have strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during this summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g. droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g. health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015 and SON 2015, a detailed monthly outlook from 5 modeling centres for Dec 2015 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of JF 2016 and MAM 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.
Resumo:
During the summer and autumn of 2015, El Niño conditions in the east and central Pacific have strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during this summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015, SON 2015 and Dec 2015, a detailed monthly outlook from 4 modeling centres for Jan 2016 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of Feb 2016, MAM 2016 and Jun 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts.
Resumo:
During the summer and autumn of 2015, El Niño conditions in the east and central Pacific strengthened, disrupting weather patterns throughout the tropics and into the mid-latitudes. For example, rainfall during the summer’s Indian monsoon was approximately 15% below normal. The continued strong El Niño conditions have the potential to trigger damaging impacts (e.g., droughts, famines, floods), particularly in less-developed tropical countries, which would require a swift and effective humanitarian response to mitigate damage to life and property (e.g., health, migration, infrastructure). This analysis uses key climatic variables (temperature, soil moisture and precipitation) as measures to monitor the ongoing risk of these potentially damaging impacts. The previous 2015-2016 El Niño Impact Analysis was based on observations over the past 35 years and produced Impact Tables showing the likelihood and severity of the impacts on temperature and rainfall by season. The current report is an extension of this work, providing information from observations and seasonal forecast models to give a more detailed outlook of the potential near-term impacts of the current El Niño conditions by region. This information has been added to the Impact Tables in the form of an ‘Observations and Outlook’ row. This consists of observational information for the past seasons of JJA 2015, SON 2015 and DJ 2015/2016, a detailed monthly outlook from 5 modeling centres for Feb 2016 and then longer-term seasonal forecast information from 2 modeling centres for the future seasons of MAM 2016 and JJ 2016. The seasonal outlook information is an indication of the average likely conditions for that coming month (or season) and region and is not a definite prediction of weather impacts. This report has been produced by University of Reading for Evidence on Demand with the assistance of the UK Department for International Development (DFID) contracted through the Climate, Environment, Infrastructure and Livelihoods Professional Evidence and Applied Knowledge Services (CEIL PEAKS) programme, jointly managed by DAI (which incorporates HTSPE Limited) and IMC Worldwide Limited.