874 resultados para Forecast demand


Relevância:

30.00% 30.00%

Publicador:

Resumo:

More and more households are purchasing electric vehicles (EVs), and this will continue as we move towards a low carbon future. There are various projections as to the rate of EV uptake, but all predict an increase over the next ten years. Charging these EVs will produce one of the biggest loads on the low voltage network. To manage the network, we must not only take into account the number of EVs taken up, but where on the network they are charging, and at what time. To simulate the impact on the network from high, medium and low EV uptake (as outlined by the UK government), we present an agent-based model. We initialise the model to assign an EV to a household based on either random distribution or social influences - that is, a neighbour of an EV owner is more likely to also purchase an EV. Additionally, we examine the effect of peak behaviour on the network when charging is at day-time, night-time, or a mix of both. The model is implemented on a neighbourhood in south-east England using smart meter data (half hourly electricity readings) and real life charging patterns from an EV trial. Our results indicate that social influence can increase the peak demand on a local level (street or feeder), meaning that medium EV uptake can create higher peak demand than currently expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water is the driving force in nature. We use water for washing cars, doing laundry, cooking, taking a shower, but also to generate energy and electricity. Therefore water is a necessary product in our daily lives (USGS. Howard Perlman, 2013). The model that we created is based on the urban water demand computer model from the Pacific Institute (California). With this model we will forecast the future urban water use of Emilia Romagna up to the year of 2030. We will analyze the urban water demand in Emilia Romagna that includes the 9 provinces: Bologna, Ferrara, Forli-Cesena, Modena, Parma, Piacenza, Ravenna, Reggio Emilia and Rimini. The term urban water refers to the water used in cities and suburbs and in homes in the rural areas. This will include the residential, commercial, institutional and the industrial use. In this research, we will cover the water saving technologies that can help to save water for daily use. We will project what influence these technologies have to the urban water demand, and what it can mean for future urban water demands. The ongoing climate change can reduce the snowpack, and extreme floods or droughts in Italy. The changing climate and development patterns are expected to have a significant impact on water demand in the future. We will do this by conducting different scenario analyses, by combining different population projections, climate influence and water saving technologies. In addition, we will also conduct a sensitivity analyses. The several analyses will show us how future urban water demand is likely respond to changes in water conservation technologies, population, climate, water price and consumption. I hope the research can contribute to the insight of the reader’s thoughts and opinion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the railway rolling stock circulation problem in rapid transit networks where the known demand and train schedule must be met by a given fleet. In rapid transit networks the frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The previous circumstances and the reduced capacity of the depot stations and that the rolling stock is shared between the different lines, force the introduction of empty trains and a careful control on shunting operation. In practice the future demand is generally unknown and the decisions must be based on uncertain forecast. We have developed a stochastic rolling stock formulation of the problem. The computational experiments were developed using a commercial line of the Madrid suburban rail network operated by RENFE (The main Spanish operator of suburban trains of passengers). Comparing the results obtained by deterministic scenarios and stochastic approach some useful conclusions may be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. Transport modelling literature has been increasingly aware that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users’ social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced; but links between international and Spanish perspectives are rarely dealt with. The overall objective of the thesis is to develop a stepped methodology that integrate diverse perspectives to evaluate the willingness to change patterns of urban mobility in Madrid, based on four steps: (1st) analysis of causal relationships between both objective and subjective personal variables, and travel behavior to capture pro-car and pro-public transport intentions; (2nd) exploring the potential influence of individual trip characteristics and social influence variables on transport mode choice; (3rd) identifying built environment dimensions on travel behavior; and (4th) exploring the potential influence on transport mode choice of extrinsic characteristics of individual trip using panel data, land use variables using spatial characteristics and social influence variables. The data used for this thesis have been collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) carried out in Madrid. Although the steps above are mainly methodological, the application to the area of Madrid allows deriving important results that can be directly used to forecast travel demand and to evaluate the benefits of specific policies that might be implemented in the area. The results demonstrated, respectively: (1st) transport policy actions are more likely to be effective when pro-car intention has been disrupted first; (2nd) the consideration of “helped” and “voluntary” users as tested here could have a positive and negative impact, respectively, on the use of public transport; (3rd) the importance of density, design, diversity and accessibility underlying dimensions responsible for land use variables; and (4th) there are clearly different types of combinations of social interactions, land use and time frame on travel behavior studies. Finally, with the objective to study the impact of demand measures to change urban mobility behavior, those previous results have been considered in a unique way, a hybrid discrete choice model has been used on a 5th step. Then it can be concluded that urban mobility behavior is not only ruled by the maximum utility criterion, but also by a strong psychological-environment concept, developed without the mediation of cognitive processes during choice, i.e., many people using public transport on their way to work do not do it for utilitarian reasons, but because no other choice is available. Regarding built environment dimensions, the more diversity place of residence, the more difficult the use of public transport or walking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The macroeconomic results achieved by Belarus in 2012 laid bare the weakness and the inefficiency of its economy. Belarus’s GDP and positive trade balance were growing in the first half of last year. However, this trend was reversed when Russia blocked the scheme of extremely lucrative manipulations in the re-export of Russian petroleum products by Belarus and when the demand for potassium fertilisers fell on the global market. It became clear once again that the outdated Belarusian model of a centrally planned economy is unable to generate sustainable growth, and the Belarusian economy needs thorough structural reforms. Nevertheless, President Alyaksandr Lukashenka consistently continues to block any changes in the system and at the same time expects that the economic indicators this year will reach levels far beyond the possibilities of the Belarusian economy. Therefore, there is a risk that the Belarusian government may employ – as they used to do – instruments aimed at artificially stimulating domestic demand, including money creation. This may upset the relative stability of state finances, which the regime managed to achieve last year. The worst case scenario would see a repeat of what happened in 2011, when a serious financial crisis occurred, forcing Minsk to make concessions (including selling the national network of gas pipelines) to Moscow, its only real source of loans. It thus cannot be ruled out that also this time the only way to recover from the slump will be to receive additional loan support and energy subsidies from Russia at the expense of selling further strategic companies to Russian investors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation Department, Office of Intermodal Transportation, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.