918 resultados para Forced-air
Resumo:
In vineyards, if phosphate is applied both before planting and at intervals during growth without consideration of technical criteria, the soil P fractions may be increased and their proportions altered. This study was carried out to evaluate the accumulation of P fractions and the parameters of the adsorption isotherm in a sandy Typic Hapludalf soil in vineyards with a history of successive and excessive phosphate fertilization. In December 2010, two vineyards were selected, one 4 and the other 15 years old, in Urussanga, State of Santa Catarina (Brazil). Three trenches were dug in each area and soil was collected from the 0-5, 5-10 and 10-20 cm depth ranges. The soil samples were dried in a forced-air oven, sieved and subjected to chemical analyses, P chemical fractionation and P adsorption isotherms. Excessive phosphate fertilization, before and during cultivation, particularly in the older vineyard and, consequently, with a longer history of phosphate fertilization, increased the inorganic P concentrations to the depth of 20 cm, especially in labile fractions extracted by anion exchange resin and NaHCO3 in the non-labile fraction, as well as in the non-labile fraction extracted by 1.0 mol L-1 HCl. The application of phosphate fertilizers and the long cultivation period increased the P levels in the organic labile fraction extracted by 0.5 mol L-1 NaHCO3, and especially in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH. Phosphate fertilization of older vineyards, i.e., cultivated for 15 years, increased the amounts of P desorbed in water, indicating a risk of contamination of surface waters and groundwater. The phosphate fertilization before planting, without considering the results of soil analysis, and during cultivation, disregarding the results of soil analysis, leaf analysis and expected yield, led to a reduction in the maximum P adsorption capacity in the 0-5 cm layer of vineyard 2, indicating saturation of part of the reactive particle adsorption sites.
Resumo:
In castor oil extraction process, the bean coat is abrasive to the equipment and releases substances that modify the oil color, reducing its quality. A potential solution would be to run the extraction by compressing only the endosperm. Due to lack of information, the objective of this study was to evaluate the influence of forced air drying at 40, 60, 80 and 100 ºC and farmyard drying, in the mechanical properties of the beans, aiming to break the bean coat. Castor beans were subjected to compression tests, in two perpendicular directions, at a strain rate of 0.6 mm.s-1. Average values of force, deformation energy, strain, all at rupture, and stiffness were used to evaluate the effects of dehydration. It was observed that the heat treatments did not alter the mechanical properties of castor beans, the strain and stiffness values discriminate the differences between the directions and had the lowest coefficients of variation. It was concluded that forced air drying, more costly than farmyard drying, does not bring benefits to the decortication. However, regardless the heat treatment used, the mechanical stress lengthwise is the most suitable to promote decortication.
Resumo:
This study has aimed to develop a method for simultaneous extraction and determination by liquid chromatography and mass spectrometry (LC-MS/MS) of glyphosate, aminomethylphosphonic acid (AMPA), shikimic acid, quinic acid, phenylalanine, tyrosine and tryptophan. For the joint analysis of these compounds the best conditions of ionization in mass spectrometry and for chromatographic separation of the compounds were selected. Calibration curves and linearity ranges were also determined for each compound. Different extraction systems of the compounds were tested from plant tissues collected from sugarcane (Saccharum officinarum) and eucalyptus (Eucalyptus urophylla platiphylla) plants two days after the glyphosate application at the dose of 720 g a.e. ha-1. The plant material was dried in a forced air circulation drying oven and in a lyophilizer, and subsequently the extractions with acidified water (pH 2.5), acetonitrile-water (50:50) [v/v] and methanol-water (50:50) [v/v] were tested. To verify the recovery of the compounds in the plant matrix with acidified water as an extracting solution, the samples were fortified with a solution containing the mixture of the different analytical standards present so that this one presented the same levels of 50 and 100 μg L-1 of each compound. All experiments were conducted with three replicates. The analytical method developed was efficient for compounds quantifications. The extraction from the samples dried in an oven and using acidified water allowed better extraction levels for all compounds. The recovery levels of the compounds in the fortified samples with known amounts of each compound for both plants samples were rather satisfactory.
Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.)
Resumo:
The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned) on the antioxidant potential (ABTS) and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours) increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours) or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours). For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8) for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.
Resumo:
To evaluate the effectiveness of gibberellic acid (GA3) in breaking rice seed dormancy and the use of alpha-amylase enzyme activity as an indicator of the dormancy level, seed from the intensively dormant irrigated cultivar Urucuia were used. The seeds were submitted to a pre-drying process in a forced air circulation chamber under 40ºC during 7 days and submersed in 30 mL of GA3 solution under 0, 10, 30 and 60 mg/L H2O concentrations, during 2, 24 and 36 hours. After the treatments, the alpha-amylase activity was determined by using the polyacrilamide electrophoresis and spectrophotometry. At the same time, the germination test was made. The results indicated a gain in germination and in alpha-amylase activity in higher concentrations and soaking time of seeds in GA3. These observations support the conclusion that soaking seed in 60 mg GA3/L during 36 hours can be used as a quick and efficient treatment in breaking rice seed dormancy and is equivalent to the forced air circulation chamber at 40ºC during 7 days. The alpha-amylase enzyme activity proved to be as an efficient marker of the seeds dormancy level.
Resumo:
The objective of this study was to verify the effect of drying on germination of cupuassu (Theobroma grandiflorum (Willd. ex Spreng) K. Schum.) seeds. Desiccation was in forced air oven, with temperature ranging from 23 to 33ºC. Sowing was carried out at 0.5cm of depth in plastic trays in sand and sawdust mixture (1:1), previously sterilized in hot water (100ºC), during 2h. Seeds were left to germinate in a laboratory with no temperature and relative humidity control, under natural light. It was quantified the seed moisture content, in four replications of 10 seeds; the germination percentage, performed during 30 days, with daily counts of the number of germinated seeds; the germination speed index; and number of days to the germination onset. The experimental design was completely randomized with four replications of 25 seeds. The reduction of moisture content from 58.6 to 37.8% did not affect seed germination and germination speed index; however, they were affected when moisture content was reduced to values below 30.7%. It was observed that only when moisture content was 16.1% seeds demanded more days to begin germination. Cupuassu seeds are classified as recalcitrant and they can be desiccated up to 37.8% with no reduction on germination.
Resumo:
In composite agricultural materials such as grass, tee, medicinal plants; leaves and stems have a different drying time. By this behavior, after leaving the dryer, the stems may have greater moisture content than desired, while the leaves one minor, which can cause either the appearance of fungi or the collapse of the over-dried material. Taking into account that a lot of grass is dehydrated in forced air dryers, especially rotary drum dryers, this research was developed in order to establish conditions enabling to make a separation of the components during the drying process in order to provide a homogeneous product at the end. For this, a rotary dryer consisting of three concentric cylinders and a circular sieve aligned with the more internal cylinder was proposed; so that, once material enters into the dryer in the area of the inner cylinder, stems pass through sieve to the middle and then continue towards the external cylinder, while the leaves continue by the inner cylinder. For this project, a mixture of Ryegrass and White Clover was used. The characteristics of the components of a mixture were: Drying Rate in thin layer and in rotation, Bulk density, Projected Area, Terminal velocity, weight/Area Ratio, Flux through Rotary sieve. Three drying temperatures; 40°C, 60° C and 80° C, and three rotation speeds; 10 rpm, 20 rpm and 40 rpm were evaluated. It was found that the differences in drying time are the less at 80 °C when the dryer rotates at 40 rpm. Above this speed, the material adheres to the walls of the dryer or sieve and does not flow. According to the measurements of terminal velocity of stems and leaves of the components of the mixture, the speed of the air should be less than 1.5 m s-1 in the inner drum for the leaves and less than 4.5 m s-1 in middle and outer drums for stems, in such way that only the rotational movement of the dryer moves the material and achieves a greater residence time. In other hand, the best rotary sieve separation efficiencies were achieved when the material is dry, but the results are good in all the moisture contents. The best rotary speed of sieve is within the critical rotational speed, i.e. 20 rpm. However, the rotational speed of the dryer, including the sieve in line with the inner cylinder should be 10 rpm or less in order to achieve the greatest residence times of the material inside the dryer and the best agitation through the use of lifting flights. With a finite element analysis of a dryer prototype, using an air flow allowing speeds of air already stated, I was found that the best performance occurs when, through a cover, air enters the dryer front of the Middle cylinder and when the inner cylinder is formed in its entirety through a sieve. This way, air flows in almost equal amounts by both the middle and external cylinders, while part of the air in the Middle cylinder passes through the sieve towards the inner cylinder. With this, leaves do not adhere to the sieve and flow along drier, thanks to the rotating movement of the drums and the showering caused by the lifting flights. In these conditions, the differences in drying time are reduced to 60 minutes, but the residence time is higher for the stems than for leaves, therefore the components of the mixture of grass run out of the dryer with the same desired moisture content.
Resumo:
One of the most prominent industrial applications of heat transfer science and engineering has been electronics thermal control. Driven by the relentless increase in spatial density of microelectronic devices, integrated circuit chip powers have risen by a factor of 100 over the past twenty years, with a somewhat smaller increase in heat flux. The traditional approaches using natural convection and forced-air cooling are becoming less viable as power levels increase. This paper provides a high-level overview of the thermal management problem from the perspective of a practitioner, as well as speculation on the prospects for electronics thermal engineering in years to come.
Resumo:
Changes in ocean circulation associated with internal climate variability have a major influence on upper ocean temperatures, particularly in regions such as the North Atlantic, which are relatively well-observed and therefore over-represented in the observational record. As a result, global estimates of upper ocean heat content can give misleading estimates of the roles of natural and anthropogenic factors in causing oceanic warming. We present a method to quantify ocean warming that filters out the natural internal variability from both observations and climate simulations and better isolates externally forced air-sea heat flux changes. We obtain a much clearer picture of the drivers of oceanic temperature changes, being able to detect the effects of both anthropogenic and volcanic influences simultaneously in the observed record. Our results show that climate models are capable of capturing in remarkable detail the externally forced component of ocean temperature evolution over the last five decades.
Resumo:
In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings
Resumo:
O trabalho teve como objetivo estudar a tolerância à dessecação e a influência do tegumento na germinação de sementes de citrumelo 'Swingle'. As sementes foram extraídas manualmente e, em seguida, foi determinado o grau de umidade das sementes. Foi retirada uma amostra referente ao tratamento com o maior grau de umidade (48%) a ser estudado, e as demais foram submetidas à secagem em estufa com circulação forçada de ar (32±2ºC), visando à obtenção dos outros tratamentos com diferentes graus de umidade. O teste de germinação foi instalado em delineamento experimental inteiramente casualizado, num fatorial 6x2 (grau de umidade x presença ou ausência de tegumento), com quatro repetições de 25 sementes por parcela. Após a obtenção de cada tratamento as sementes foram tratadas com o fungicida Thiabendazole (0,4g.kg-1), semeadas em folhas de papel toalha umedecidas e confeccionados rolos que foram mantidos em câmara de germinação a 25ºC sob luz constante. As avaliações foram realizadas a cada sete dias até o 35º dia, sendo determinadas as porcentagens de germinação na primeira contagem, plântulas anormais, sementes mortas, sementes dormentes e germinação total. Também foram calculados o tempo médio e o índice de velocidade de germinação (IVG). Os dados foram submetidos à análise de variância, e as médias, comparadas pelo teste Tukey, a 5% de probabilidade. As sementes toleraram a dessecação até baixos níveis de umidade (16%), e a retirada do tegumento favoreceu o processo germinativo em sementes de citrumelo 'Swingle'.
Resumo:
Visando a obtenção de um tratamento para acelerar a germinação de sementes de Desmodium tortuosum (Sw.) DC., foram realizados dois experimentos, nos quais, segmentos unisseminados de lomentos (testemunha) foram submetidos a debulha manual; debulha manual seguida por escarificação manual empregando-se lixa n. 220; debulha mecânica (processador doméstico ); escarificação química com H2SO4 (95%) por 1,5 e 8 mim pré-aquecimento à 53°C por 4,10 e 16h em estufa com circulação forçada de ar; embebição, utilizando-se H,0 à 80°C por 1,3,5 e 10 min; H20 à 27°C por 2h e embebição com alternância térmica (H,0 à 80°C/ 5min e H20 à 13 °C / 1min) . Para a avaliação dos tratamentos foram empregados os testes de germinação, de emergência de plântulas em solo (E), de primeira contagem de germinação (PG) e de emergência (PE), índices de velocidade de germinação (I.V.G.) e de emergência (I.V.E.), e o comprimento de plântulas (CP). 0 delineamento estatístico adotado foi o inteiramente casualizado com 4 repetições de 100 (G, PG, I.V.G.) ou 20 sementes (C P) por tratamento no primeiro experimento e 4 repetições de 50 (G, PG, I.V.G.) ou 100 sementes (E, PE, I.V.E.) no segundo experimento. No primeiro experimento, os tratamentos que provocaram significativa redução da dormência (D) e, conseqüente elevação da germinação (G), em comparação à testemunha (D=82%; G=15%) foram, em ordem decrescente de eficácia: debulha e escarificação manuais (D=3%; G= 92%), debu lha mecânica (D=13%; G= 81%), embebição em H20 à 80°C por 1min (D=68%; G= 29%) e por 3 min (D=65%; G=32%). No segundo experimento, (testemunha com D=93% e G=3%) destacaram-se: debulha e escarificação manuais (D=2%; G= 93%), debulha mecânica (D = 2%; G = 87%), embebição em H20 à 80°C por 5min e alternância térmica (ambos com D=85% e G= 11%). 0s testes de vigor PC, I.V. G., I.V. E., CP, e E corroboraram esses resultados. 0s métodos de escarificação manual com lixa 220 e debulha mecânica, empregando-se processa dor, podem ser recomendados para a superação da dormência e promoção da germinação de sementes de D. tortuosum.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho abordou o resfriamento rápido com ar forçado de morango via simulação numérica. Para tanto, foi empregado o modelo matemático que descreve o processo de transferência de calor, com base na lei de Fourier, escrito em coordenadas esféricas e simplificado para descrever o processo unidimensional. A resolução da equação expressa pelo modelo matemático deu-se por meio da implementação de um algoritmo, fundamentado no esquema explícito do método numérico das diferenças finitas, executado no ambiente de computação científica MATLAB 6.1. A validação do modelo matemático foi realizada a partir da comparação de dados teóricos com dados obtidos num experimento, no qual morangos foram resfriados com ar forçado. Os resultados mostraram que esse tipo de investigação para a determinação do coeficiente de transferência de calor por convecção é promissora como ferramenta no suporte à decisão do uso ou desenvolvimento de equipamentos na área de resfriamento rápido de frutos esféricos com ar forçado.
Resumo:
An experiment was conducted to study the effects of liming and drying method on Ca nutrition, fungus infection and aflatoxin production potential on peanut (Arachis hypogea) grains. Peanut cv. Botutatu was grown in the absence or presence of liming to raise the base saturation of the soil from 20 to 56%. Calcium contents of the soil were increased from 5.5 to 14.6 mmol((c))kg-1 and pH from 4.2 to 4.9. After harvest, plants and pods were dried in (1) shade, (2) field down to 100 g water kg-1 (3) field down to 250 g water kg-1 and transferred to a forced-air oven at 30°C, (4) field down to 360 g water kg-1 and transferred to a forced-air oven at 30°C. Calcium contents were analyzed in the grains, pericarps and seed coats. The incidence of Aspergillus spp., Penicillium spp., Rhizopus spp. and potential aflatoxin production in vitro were evaluated, as well as the seed coat thickness. The seed coat was thicker when peanut was grown in the presence of lime, leading to a decrease in seed infection by Aspergillus spp. and Penicillium spp. When plants were dried in shade, the growth of aflatoxinogenic fungi was independent of liming. However, in plants dried in the field or field + oven, the development of these fungi was decreased and even suppressed when the Ca content of the seed coat was increased from 2.2 to 5.5 g kg-1.