880 resultados para Flying-machines
Resumo:
Creativity has become the economic engine of the 21st century. No longer the preserve of creative industries, 'creative capital' – in the form of novel thinking, navigation, interactivity and border-crossing – has become crucial to success and productivity. But are young people being equipped for a work future in which creativity is the defining feature of economic life? In this important book, Erica McWilliam argues that young people’s creative capacities are not being properly developed and that education, particularly in Australia, demands a massive pedagogical shift. Using both Australian and overseas examples, McWilliam describes what creative capacities are, why they've become important to our work futures, and what can be done to optimise the creative capacities of young people.
Resumo:
We consider multi-robot systems that include sensor nodes and aerial or ground robots networked together. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We present a sensor network deployment method using autonomous aerial vehicles and describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for repair, to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth). © Springer-Verlag Berlin/Heidelberg 2006.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
VMSCRIPT is a scripting language designed to allow small programs to be compiled for a range of generated tiny virtual machines, suitable for sensor network devices. The VMSCRIPT compiler is an optimising compiler designed to allow quick re-targeting, based on a template, code rewriting model. A compiler backend can be specified at the same time as a virtual machine, with the compiler reading the specification and using it as a code generator.
Resumo:
This paper introduces the application of a sensor network to navigate a flying robot. We have developed distributed algorithms and efficient geographic routing techniques to incrementally guide one or more robots to points of interest based on sensor gradient fields, or along paths defined in terms of Cartesian coordinates. The robot itself is an integral part of the localization process which establishes the positions of sensors which are not known a priori. We use this system in a large-scale outdoor experiment with Mote sensors to guide an autonomous helicopter along a path encoded in the network. A simple handheld device, using this same environmental infrastructure, is used to guide humans.
Resumo:
This paper proposes a flying-capacitor-based chopper circuit for dc capacitor voltage equalization in diode-clamped multilevel inverters. Its important features are reduced voltage stress across the chopper switches, possible reduction in the chopper switching frequency, improved reliability, and ride-through capability enhancement. This topology is analyzed using three- and four-level flying-capacitor-based chopper circuit configurations. These configurations are different in capacitor and semiconductor device count and correspondingly reduce the device voltage stresses by half and one-third, respectively. The detailed working principles and control schemes for these circuits are presented. It is shown that, by preferentially selecting the available chopper switch states, the dc-link capacitor voltages can be efficiently equalized in addition to having tightly regulated flying-capacitor voltages around their references. The various operating modes of the chopper are described along with their preferential selection logic to achieve the desired performances. The performance of the proposed chopper and corresponding control schemes are confirmed through both simulation and experimental investigations.
Resumo:
The flying capacitor multilevel inverter (FCMLI) is a multiple voltage level inverter topology intended for high-power and high-voltage operations at low distortion. It uses capacitors, called flying capacitors, to clamp the voltage across the power semiconductor devices. A method for controlling the FCMLI is proposed which ensures that the flying capacitor voltages remain nearly constant using the preferential charging and discharging of these capacitors. A static synchronous compensator (STATCOM) and a static synchronous series compensator (SSSC) based on five-level flying capacitor inverters are proposed. Control schemes for both the FACTS controllers are developed and verified in terms of voltage control, power flow control, and power oscillation damping when installed in a single-machine infinite bus (SMIB) system. Simulation studies are performed using PSCAD/EMTDC to validate the efficacy of the control scheme and the FCMLI-based flexible alternating current transmission system (FACTS) controllers.
Resumo:
The use of artificial neural networks (ANNs) to identify and control induction machines is proposed. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics, and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Both systems are inherently adaptive as well as self-commissioning. The current controller is a completely general nonlinear controller which can be used together with any drive algorithm. Various advantages of these control schemes over conventional schemes are cited, and the combined speed and current control scheme is compared with the standard vector control scheme
Resumo:
This paper proposes the use of artificial neural networks (ANNs) to identify and control an induction machine. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics; and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Various advantages of these control schemes over other conventional schemes are cited and the performance of the combined speed and current control scheme is compared with that of the standard vector control scheme
Resumo:
The role of particular third sector organisations, Social Clubs, in supporting gambling through the use of EGMs in venues presents as a difficult social issue. Social Clubs gain revenue from gambling activities; but also contribute to social well-being through the provision of services to communities. The revenues derived from gambling in specific geographic locales has been seen by government as a way to increase economic development particularly in deprived areas. However there are also concerns about accessibility of low-income citizens to Electronic Gaming Machines (EGMS) and the high level of gambling overall in these deprived areas. We argue that social capital can be viewed as a guard against deleterious effects of unconstrained use of EGM gambling in communities. However, it is contended that social capital may also be destroyed by gambling activity if commercial business actors are able to use EGMs without community obligations to service provision. This paper examines access to gambling through EGMs and its relationship to social capital and the consequent effect on community resilience, via an Australian case study. The results highlight the potential two-way relationship between gambling and volunteering, such that volunteering (and social capital more generally) may help protect against problems of gambling, but also that volunteering as an activity may be damaged by increased gambling activity. This suggests that, regardless of the direction of causation, it is necessary to build up social capital via volunteering and other social capital activities in areas where EGMS are concentrated. The study concludes that Social Clubs using EGMs to derive funds are uniquely positioned within the community to develop programs that foster social capital creation and build community resilience in deprived areas.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
The flying capacitor multicell inverter (FCMI) possesses natural balancing property. With the phase-shifted (PS) carrier-based scheme, natural balancing can be achieved in a straightforward manner. However, to achieve natural balancing with the harmonically optimal phase-disposition (PD) carrierbased scheme, the conventional approaches require (n-1) x (n-1) trapezoidal carrier signals for an n-level inverter, which is (n-1) x (n-2) times more than that in the standard PD scheme. This paper proposes two improved natural balancing strategies for FMI under PD scheme, which use the same (n-1) carrier signals as used in the standard PD scheme. In the first scheme, on-line detection is performed of the band in which the modulation signal is located, corresponding period number of the carrier, and rising or falling half cycle of the carrier waveform to generate the switching signals based on certain rules. In the second strategy, the output voltage level selection is first processed and the switching signals are then generated according to a rule based on preferential cell selection algorithm. These methods are easy to use and can be simply implemented as compared to the other available methods. Simulation and experimental results are presented for a five-level inverter to verify these proposed schemes.
Resumo:
Use of ball projection machines in the acquisition of interceptive skill has recently been questioned. The use of projection machines in developmental and elite fast ball sports programmes is not a trivial issue, since they play a crucial role in reducing injury incidence in players and coaches. A compelling challenge for sports science is to provide theoretical principles to guide how and when projection machines might be used for acquisition of ball skills and preparation for competition in developmental and elite sport performance programmes. Here, we propose how principles from an ecological dynamics theoretical framework could be adopted by sports scientists, pedagogues and coaches to underpin the design of interventions, practice and training tasks, including the use of hybrid video-projection technologies. The assessment of representative learning design during practice may provide ways to optimize developmental programmes in fast ball sports and inform the principled use of ball projection machines.
Resumo:
The main limitations with existing fungal spore traps are that they are stationary and cannot be used in inaccessible or remote areas of Australia. This may result in delayed assessment, possible spread of harmful crop infestations and loss of crop yield and productivity. Fitted with the developed smart spore trap the UAV can fly, detect and monitor spores of plant pathogens in areas which previously were almost impossible to monitor. The technology will allow for earlier detection of emergency plant pests (EPPs) incursions by providing efficient and effective airborne surveillance, helping to protect Australia’s crops, pastures and the environment. The project is led by the Cooperative Research Centre for National Plant Biosecurity, with ARCAA/ QUT, CSIRO and the Queensland Government also providing resources. The prototype airplane was exhibited at the Innovation in Australia event December 7.