929 resultados para Fluorescence-based Imaging
Resumo:
An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.
Resumo:
Familial hypercholesterolemia (FH) is a common autosomal codominant disease with a frequency of 1:500 individuals in its heterozygous form. The genetic basis of FH is most commonly mutations within the LDLR gene. Assessing the pathogenicity of LDLR variants is particularly important to give a patient a definitive diagnosis of FH. Current studies of LDLR activity ex vivo are based on the analysis of I-125-labeled lipoproteins (reference method) or fluorescent-labelled LDL. The main purpose of this study was to compare the effectiveness of these two methods to assess LDLR functionality in order to validate a functional assay to analyse LDLR mutations. LDLR activity of different variants has been studied by flow cytometry using FITC-labelled LDL and compared with studies performed previously with I-125-labeled lipoproteins. Flow cytometry results are in full agreement with the data obtained by the I-125 methodology. Additionally confocal microscopy allowed the assignment of different class mutation to the variants assayed. Use of fluorescence yielded similar results than I-125-labeled lipoproteins concerning LDLR activity determination, and also allows class mutation classification. The use of FITC-labelled LDL is easier in handling and disposal, cheaper than radioactivity and can be routinely performed by any group doing LDLR functional validations.
Resumo:
This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be scaled to derive photosynthetic electron transport rates ( inline image), the process that fuels phytoplankton carbon fixation and growth. Bio-optical estimates of inline image and inline image were evaluated using 10 phytoplankton cultures across different pigment groups with varying bio-optical absorption characteristics on six different fast-repetition rate fluorometers that span two different manufacturers and four different models. Culture measurements of inline image and the effective absorption cross section of PSII photochemistry ( inline image, a constituent of inline image) showed a high degree of correspondence across instruments, although some instrument-specific biases are identified. A range of approaches have been used in the literature to estimate inline image and are evaluated here. With the exception of ex situ inline image estimates from paired inline image and PSII reaction center concentration ( inline image) measurements, the accuracy and precision of in situ inline image methodologies are largely determined by the variance of method-specific coefficients. The accuracy and precision of these coefficients are evaluated, compared to literature data, and discussed within a framework of autonomous inline image measurements. This study supports the application of an instrument-specific calibration coefficient ( inline image) that scales minimum fluorescence in the dark ( inline image) to inline image as both the most accurate in situ measurement of inline image, and the methodology best suited for highly resolved autonomous inline image measurements.
Resumo:
The use of a water-soluble, thermo-responsive polymer as a highly sensitive fluorescence-lifetime probe of microfluidic temperature is demonstrated. The fluorescence lifetime of poly(N-isopropylacrylamide) labelled with a benzofurazan fluorophore is shown to have a steep dependence on temperature around the polymer phase transition and the photophysical origin of this response is established. The use of this unusual fluorescent probe in conjunction with fluorescence lifetime imaging microscopy (FLIM) enables the spatial variation of temperature in a microfluidic device to be mapped, on the micron scale, with a resolution of less than 0.1 degrees C. This represents an increase in temperature resolution of an order of magnitude over that achieved previously by FLIM of temperature-sensitive dyes
Resumo:
The preparation and characterisation are described of a robust, reversible, hydrogen peroxide optical sensor, based on the fluorescent quenching of the dye ion-pair [Ru(bpy)(3)(2+)(Ph4B-)(2)], by O-2 produced by the catalytic breakdown of H2O2, utilizing the inorganic catalyst RuO2 center dot xH(2)O. The main feature of this system is the one-pot formulation of a coating ink that, when dried, forms an active single-layer fluorescence-based H2O2 sensor, demonstrably capable of detecting H2O2 over the range of 0.01 to 1 M, with a relative standard deviation of ca. 4% and a calculated lower limit of detection of 0.1 mM. These sensors are sterilisable, using dry-heat, and stable when stored over 40 days, without exhibiting any loss in sensitivity or response characteristics.
Resumo:
A general method of preparation of thin-film sensors for O-2, incorporating the dye ion-pair tris(4,7-diphenyl-1,10-phenanthroline) rutheninm(II) ditetraphenylborate, in a variety of different thin film polymer/plasticizer matrices is described, The sensitivity of the sensor depends upon the nature of the polymer matrix and plasticizer, A detailed study of one of these systems utilising the polymer poly(methyl methacrylate), PMMA, is reported. The sensitivity of this O-2 sensor depends markedly upon the plasticizer concentration and is largely independent of temperature (24,5-52.5 degrees C) and age (up to 30 d), When exposed to an alternating atmosphere of O-2 and N-2, a typical oxygen film sensor in PMMA exhibits a 0-90% response and recovery time of 0.4 and 4.5 s, respectively.
Resumo:
SU-8 epoxy-based negative photoresist has been extensively employed as a structural material for fabrication of numerous biological microelectro-mechanical systems (Bio-MEMS) or lab-on-a-chip (LOC) devices. However, SU-8 has a high autofluorescence level that limits sensitivity of microdevices that use fluorescence as the predominant detection workhorse. Here, we show that deposition of a thin gold nanoparticles layer onto the SU-8 surface significantly reduces the autofluorescence of the coated SU-8 surface by as much as 81% compared to bare SU-8. Furthermore, DNA probes can easily be immobilized on the Au surface with high thermal stability. These improvements enabled sensitive DNA detection by simple DNA hybridization down to 1 nM (a two orders of magnitude improvement) or by solid-phase PCR with sub-picomolar sensitivity. The approach is simple and easy to perform, making it suitable for various Bio-MEMs and LOC devices that use SU-8 as a structural material.
Resumo:
The design, development and evaluation of an optical fibre pH sensor for monitoring pH in the alkaline region are discussed in detail in this paper. The design of this specific pH sensor is based on the pH induced change in fluorescence intensity of a coumarin imidazole dye which is covalently attached to a polymer network and then fixed to the distal end of an optical fibre. The sensor provides a response over a pH range of 10.0–13.2 with an acceptable response rate of around 50 min, having shown a very good stability over a period of longer than 20 months thus far. The sensor has also demonstrated little cross-sensitivity to ionic strength (IS) and also excellent photostability through a series of laboratory tests. These features make this type of sensor potentially well suited for in situ long term monitoring of pH in concrete structures, to enhance structural monitoring in the civil engineering sector
Resumo:
Current methods for measuring deoxyribonucleoside triphosphates (dNTPs) employ reagent and labor-intensive assays utilizing radioisotopes in DNA polymerase-based assays and/or chromatography-based approaches. We have developed a rapid and sensitive 96-well fluorescence-based assay to quantify cellular dNTPs utilizing a standard real-time PCR thermocycler. This assay relies on the principle that incorporation of a limiting dNTP is required for primer-extension and Taq polymerase-mediated 5-3' exonuclease hydrolysis of a dual-quenched fluorophore-labeled probe resulting in fluorescence. The concentration of limiting dNTP is directly proportional to the fluorescence generated. The assay demonstrated excellent linearity (R(2) > 0.99) and can be modified to detect between ∼0.5 and 100 pmol of dNTP. The limits of detection (LOD) and quantification (LOQ) for all dNTPs were defined as <0.77 and <1.3 pmol, respectively. The intra-assay and inter-assay variation coefficients were determined to be <4.6% and <10%, respectively with an accuracy of 100 ± 15% for all dNTPs. The assay quantified intracellular dNTPs with similar results obtained from a validated LC-MS/MS approach and successfully measured quantitative differences in dNTP pools in human cancer cells treated with inhibitors of thymidylate metabolism. This assay has important application in research that investigates the influence of pathological conditions or pharmacological agents on dNTP biosynthesis and regulation.
Resumo:
This work explores the use of fluorescent probes to evaluate the responses of the green alga Pseudokirchneriella subcapitata to the action of three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II) for a short time (6 h). The toxic effect of the metals on algal cells was monitored using the fluorochromes SYTOX Green (SG, membrane integrity), fluorescein diacetate (FDA, esterase activity) and rhodamine 123 (Rh123, mitochondrial membrane potential). The impact of metals on chlorophyll a (Chl a) autofluorescence was also evaluated. Esterase activity was the most sensitive parameter. At the concentrations studied, all metals induced the loss of esterase activity. SG could be used to effectively detect the loss of membrane integrity in algal cells exposed to 0.32 or 1.3 μmol L−1 Cu(II). Rh123 revealed a decrease in the mitochondrial membrane potential of algal cells exposed to 0.32 and 1.3 μmol L−1 Cu(II), indicating that mitochondrial activity was compromised. Chl a autofluorescence was also affected by the presence of Cr(VI) and Cu(II), suggesting perturbation of photosynthesis. In conclusion, the fluorescence-based approach was useful for detecting the disturbance of specific cellular characteristics. Fluorescent probes are a useful diagnostic tool for the assessment of the impact of toxicants on specific targets of P. subcapitata algal cells.
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus smithii , and fibrin alginolvticus, a Gram- negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smithii was observed . The effect of dye on the samples was also studied in detail.
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus .cmithii , and fibrin alginolvticus, a Gram-' negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smitltii was observed . The effect of dye on the samples was also studied in detail.