900 resultados para Fluorescence in situ hybridisation (fish)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nucleolus organizer regions (NORs) were analysed in two related and geographically close populations of Eigenmannia sp.1 (Pisces, Gymnotoidei, Sternopygidae) using silver staining and fluorescence in situ hybridization (FISH). The two populations differed in their AS-NOR phenotypes, displaying fixed differences in the NOR-bearing chromosome pairs. FISH with rDNA probes showed that these differences were due to the location of rDNA cistrons. This finding, showing fixed NOR differences between two populations belonging to the same species in a connected river system, is highly significant in terms of evolutionary change, possibly indicating an initial step of genetic differentiation. This result also has important implications from the cytosystematic point of view, as NORs usually have a very constant karyotypic location in fish species and have been used as species-specific chromosome markers.
Resumo:
Molecular markers reliably predicting failure or success of Bacillus Calmette-Guérin (BCG) in the treatment of nonmuscle-invasive urothelial bladder cancer (NMIBC) are lacking. The aim of our study was to evaluate the value of cytology and chromosomal aberrations detected by fluorescence in situ hybridization (FISH) in predicting failure to BCG therapy. Sixty-eight patients with NMIBC were prospectively recruited. Bladder washings collected before and after BCG instillation were analyzed by conventional cytology and by multitarget FISH assay (UroVysion, Abbott/Vysis, Des Plaines, IL) for aberrations of chromosomes 3, 7, 17 and 9p21. Persistent and recurrent bladder cancers were defined as positive events during follow-up. Twenty-six of 68 (38%) NMIBC failed to BCG. Both positive post-BCG cytology and positive post-BCG FISH were significantly associated with failure of BCG (hazard ratio (HR)= 5.1 and HR= 5.6, respectively; p < 0.001 each) when compared to those with negative results. In the subgroup of nondefinitive cytology (all except those with unequivocally positive cytology), FISH was superior to cytology as a marker of relapse (HR= 6.2 and 1.4, respectively). Cytology and FISH in post-BCG bladder washings are highly interrelated and a positive result predicts failure to BCG therapy in patients with NMIBC equally well. FISH is most useful in the diagnostically less certain cytology categories but does not provide additional information in clearly malignant cytology.
Resumo:
BACKGROUND Cytology is an excellent method with which to diagnose preinvasive lesions of the uterine cervix, but it suffers from limited specificity for clinically significant lesions. Supplementary methods might predict the natural course of the detected lesions. The objective of the current study was to test whether a multicolor fluorescence in situ hybridization (FISH) assay might help to stratify abnormal results of Papanicolaou tests. METHODS A total of 219 liquid-based cytology specimens of low-grade squamous intraepithelial lesions (LSIL), 49 atypical squamous cells of undetermined significance (ASCUS) specimens, 52 high-grade squamous intraepithelial lesion (HSIL) specimens, and 50 normal samples were assessed by FISH with probes for the human papillomavirus (HPV), MYC, and telomerase RNA component (TERC). Subtyping of HPV by polymerase chain reaction (PCR) was performed in a subset of cases (n=206). RESULTS There was a significant correlation found between HPV detection by FISH and PCR (P<.0001). In patients with LSILs, the presence of HPV detected by FISH was significantly associated with disease progression (P<.0001). An increased MYC and/or TERC gene copy number (>2 signals in>10% of cells) prevailed in 43% of ASCUS specimens and was more frequent in HSIL (85%) than in LSIL (33%) (HSIL vs LSIL: P<.0001). Increased TERC gene copy number was significantly correlated with progression of LSIL (P<.01; odds ratio, 7.44; area under the receiver operating characteristic curve, 0.73; positive predictive value, 0.30; negative predictive value, 0.94) CONCLUSIONS: The detection of HPV by FISH analysis is feasible in liquid-based cytology and is significantly correlated with HPV analysis by PCR. The analysis of TERC gene copy number may be useful for risk stratification in patients with LSIL.
Resumo:
An unusual feature of the mammalian genome is the number of genes exhibiting monoallelic expression. Recently random monoallelic expression of autosomal genes has been reported for olfactory and Ly-49 NK receptor genes, as well as for Il-2, Il-4 and Pax5. RNA fluorescence in situ hybridization (FISH) has been exploited to monitor allelic expression by visualizing the number of sites of transcription in individual nuclei. However, the sensitivity of this technique is difficult to determine for a given gene. We show that by combining DNA and RNA FISH it is possible to control for the hybridization efficiency and the accessibility and visibility of fluorescent probes within the nucleus.
Resumo:
Fluorescence in situ hybridization (FISH) is a powerful tool for physical mapping in human and other mammalian species. However, application of the FISH technique has been limited in plant species, especially for mapping single- or low-copy DNA sequences, due to inconsistent signal production in plant chromosome preparations. Here we demonstrate that bacterial artificial chromosome (BAC) clones can be mapped readily on rice (Oryza sativa L.) chromosomes by FISH. Repetitive DNA sequences in BAC clones can be suppressed efficiently by using rice genomic DNA as a competitor in the hybridization mixture. BAC clones as small as 40 kb were successfully mapped. To demonstrate the application of the FISH technique in physical mapping of plant genomes, both anonymous BAC clones and clones closely linked to a rice bacterial blight-resistance locus, Xa21, were chosen for analysis. The physical location of Xa21 and the relationships among the linked clones were established, thus demonstrating the utility of FISH in plant genome analysis.
Resumo:
Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.
Resumo:
A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-.N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO3-.N mg of MLVSS-1 h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [C-13] methanol to biomark the DNA of the denitrifiers. The extracted [C-13]DNA and [C-12]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [C-13]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [C-12]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [C-14] methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.
Resumo:
Microbial communities play important roles in the functioning of coral reef communities. However, extensive autofluorescence of coral tissues and endosymbionts limits the application of standard fluorescence in situ hybridization (FISH) techniques for the identification of the coral-associated bacterial communities. This study overcomes these limitations by combining FISH and spectral imaging.
Resumo:
Fluorescence in situ hybridization (FISH) for FOXO1 gene rearrangement and reverse transcription-polymerase chain reaction (PCR) for PAX3/7-FOXO1 fusion transcripts have become routine ancillary tools for the diagnosis of alveolar rhabdomyosarcomas (ARMS). Here we summarize our experience of these adjunct diagnostic modalities at a tertiary center, presenting the largest comparative series of FISH and PCR for suspected or possible ARMS to date. All suspected or possible ARMS tested by FISH or PCR for FOXO1 rearrangement or PAX3/7-FOXO1 fusion transcripts over a 7-year period were included. FISH and PCR results were correlated with clinical and histologic findings. One hundred samples from 95 patients had FISH and/or PCR performed. FISH had higher rates of technical success (96.8 %) compared with PCR (88 %). Where both tests were utilized successfully, there was high concordance rate between them (94.9 %). In 24 histologic ARMS tested for FISH or PCR, 83.3 % were translocation-positive (all for PAX3-FOXO1 by PCR) and included 3 histologic solid variants. In 76 cases where ARMS was excluded, there were 3 potential false-positive cases with FISH but none with PCR. PCR had similar sensitivity (85.7 %) and better specificity (100 %) in aiding the diagnosis of ARMS, compared with FISH (85 and 95.8 %, respectively). All solid variant ARMS harbored FOXO1 gene rearrangements and PAX3-FOXO1 ARMS were detected to the exclusion of PAX7-FOXO1. In comparative analysis, both FISH and PCR are useful in aiding the diagnosis of ARMS and excluding its sarcomatous mimics. FISH is more reliable technically but has less specificity than PCR. In cases where ARMS is in the differential diagnosis, it is optimal to perform both PCR and FISH: both have similar sensitivities for detecting ARMS, but FISH may confirm or exclude cases that are technically unsuccessful with PCR, while PCR can detect specific fusion transcripts that may be useful prognostically.
Resumo:
Angiomatoid fibrous histiocytoma (AFH) is a rare soft tissue neoplasm of intermediate biologic potential and uncertain differentiation, most often arising in the extremities of children and young adults. Although it has characteristic histologic features of a lymphoid cuff surrounding nodules of ovoid cells with blood-filled cystic cavities, diagnosis is often difficult due to its morphologic heterogeneity and lack of specific immunoprofile. Angiomatoid fibrous histiocytoma is associated with recurrent chromosomal translocations, leading to characteristic EWSR1-CREB1, EWSR1-ATF1, and, rarely, FUS-ATF1 gene fusions; fluorescence in situ hybridization (FISH), detecting EWSR1 or FUS rearrangements, and reverse transcription-polymerase chain reaction (RT-PCR) for EWSR1-CREB1 and EWSR1-ATF1 fusion transcripts have become routine ancillary tools. We present a large comparative series of FISH and RT-PCR for AFH. Seventeen neoplasms (from 16 patients) histologically diagnosed as AFH were assessed for EWSR1 rearrangements or EWSR1-CREB1 and EWSR1-ATF1 fusion transcripts. All 17 were positive for either FISH or RT-PCR or both. Of 16, 14 (87.5%) had detectable EWSR1-CREB1 or EWSR1-ATF1 fusion transcripts by RT-PCR, whereas 13 (76.5%) of 17 had positive EWSR1 rearrangement with FISH. All 13 of 13 non-AFH control neoplasms failed to show EWSR1-CREB1 or EWSR1-ATF1 fusion transcripts, whereas EWSR1 rearrangement was present in 2 of these 13 cases (which were histopathologically myoepithelial neoplasms). This study shows that EWSR1-CREB1 or EWSR1-ATF1 fusions predominate in AFH (supporting previous reports that FUS rearrangement is rare in AFH) and that RT-PCR has a comparable detection rate to FISH for AFH. Importantly, cases of AFH can be missed if RT-PCR is not performed in conjunction with FISH, and RT-PCR has the added advantage of specificity, which is crucial, as EWSR1 rearrangements are present in a variety of neoplasms in the histologic differential diagnosis of AFH, that differ in behavior and treatment.
Resumo:
Background: At the end of 80s, cloning technologies with the increase of the antibodies’ sensibility made easier the development of technologies based on Fluorescence in situ Hibridation (FISH). Nowadays, It’s widely used in the field of basic investigation as much as clinic diagnostic. Method: FISH is a technique that combines molecular biology with histochemistry way to detect specific nucleotide sequences so that chromosome’s section or even whole chromosome can be marked on metaphases cells (cell in division) and on attached cellular nucleus. This detection is realized using DNA fluorescence probes (marked with fluorophores), that can be different according to the structures manage to detect: large single-locus probes, small unique-sequence probes, chromosome- or region-specific “paints” or repetitive sequence probes and genomic DNA probes. Some of the applications of this technique is that can be so useful in the detection of numerical and structural chromosomal alterations such as polyploidies or genomic rearrangement, to mapping metaphases cells and even to detect bacteria or another type of microorganism. In addition, FISH allows us to monitoring diseases (antitumor therapies, quantification of genomic altered cells…) and the precise location of chromosomic broken spots on tumor searching for new genes involved in cancer and detect and map interested known genes. Conclusion: FISH has many advantages ahead of conventional cytogenetic techniques (bands G karyotype) overall at the time of establish a clinic diagnostic to detect tumors and chromosomic aberration, presenting a higher sensibility and specificity as well as being a relative quick technique (24 hours).
Resumo:
FISH has been used as a complement to classical cytogenetics in the detection of mosaicism in sex chromosome anomalies. The aim of this study is to describe three cases in which the final diagnosis could only be achieved by FISH. Case 1 was an 8-year-old 46,XY girl with normal female genitalia referred to our service because of short stature. FISH analysis of lymphocytes with probes for the X and Y centromeres identified a 45,X/46,X,idic(Y) constitution, and established the diagnosis of Turner syndrome. Case 2 was a 21-month-old 46,XY boy with genital ambiguity (penile hypospadias, right testis, and left streak gonad). FISH analysis of lymphocytes and buccal smear identified a 45,X/46,XY karyotype, leading to diagnosis of mixed gonadal dysgenesis. Case 3 was a 47,XYY 19-year-old boy with delayed neuromotor development, learning disabilities, psychological problems, tall stature, small testes, elevated gonadotropins, and azoospermia. FISH analysis of lymphocytes and buccal smear identified a 47,XYY/48,XXYY constitution. Cases 1 and 2 illustrate the phenotypic variability of the 45,X/46,XY mosaicism, and the importance of detection of the 45,X cell line for proper management and follow-up. In case 3, abnormal gonadal function could be explained by the 48,XXYY cell line. The use of FISH in clinical practice is particularly relevant when classical cytogenetic analysis yields normal or uncertain results in patients with features of sex chromosome aneuploidy. Arq Bras Endocrinol Metab. 2012;56(8):545-51
Resumo:
Biological nitrogen removal via nitrite pathway in wastewater treatment is very important especially in the cost of aeration and as an electron donor for denitrification. Wastewater nitrification and nitrite accumulations were carried out in a biofilm reactor. The biofilm reactor showed almost complete nitrification and most of the oxidized ammonium was present as nitrite at the ammonium load of 1.2 kg N/m3/d. Nitrite accumulation was achieved by the selective inhibition of nitrite oxidizers by free ammonia and oxygen limitation. Nitrite oxidation activity was recovered as soon as the inhibition factor was removed. Fluorescence in situ hybridization studies of the nitrite accumulating biofilm system have shown that genus Nitrosomonas which is specifically hybridized with probe NSM 156 was the dominant nitrifying bacteria while Nitrospira was less abundant than those of normal nitrification systems. Further FISH analysis showed that the combinations of Nitrosomonas and Nitrospira cells were identified as important populations of nitrifying bacteria in an autotrophic nitrifying biofilm system.
Resumo:
Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r=0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.