999 resultados para Flow-batch analyser
Resumo:
Liquid-liquid microextraction without phase segmentation was implemented in a multicommuted flow system for determination of the anti-hypertensive diltiazem. The procedure was based on ion pair formation between the drug and the dye bromothymol blue at pH 3.5. The detection was performed without phase separation in a glass tube coupled to a fiber-optics spectrophotometer. The total volume of chloroform was reduced to 50 mu L in comparison with 10 mL consumed in batch. A linear response was observed between 9 and 120 mu mol L(-1), with a detection limit of 0.9 mu mol L(-1) (99.7% confidence level). The coefficient of variation (n = 10), sampling rate and extraction efficiency were estimated as 0.6%, 78 determinations per hour and 61%, respectively. About 30 mu g of bromothymol blue was consumed and the waste volume was 380 mu L per determination. The results for pharmaceutical samples agreed with those obtained by the reference procedure at the 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An improved flow-based procedure is proposed for turbidimetric sulphate determination in waters. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. Stable baselines were observed in view of the pulsed flow characteristic of the systems designed with solenoid micro-pumps, thus making the use of washing solutions unnecessary. The nucleation process was improved by stopping the flow prior to the measurement, thus avoiding the need of sulphate addition. When a 1-cm optical path flow cell was employed, linear response was achieved within 20-200 mg L(-1), described by the equation S = -0.0767 + 0.00438C (mg L(-1)), r = 0.999. The detection limit was estimated as 3 mg L(-1) at the 99.7% confidence level and the coefficient of variation was 2.4% (n = 20). The sampling rate was estimated as 33 determinations per hour. A long pathlength (100-cm) flow cell based on a liquid core waveguide was exploited to increase sensitivity in turbidimetry. Baseline drifts were avoided by a periodical washing step with EDTA in alkaline medium. Linear response was observed within 7-16 mg L(-1), described by the equation S = -0.865 + 0.132C (mg L(-1)), r = 0.999. The detection limit was estimated as 150 mu g L(-1) at the 99.7% confidence level and the coefficient of variation was 3.0% (n = 20). The sampling rate was estimated as 25 determinations per hour. The results obtained for freshwater and rain water samples were in agreement with those achieved by batch turbidimetry at the 95% confidence level. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
A flow system designed with solenoid micro-pumps is introduced for spectrophotometric determination of total tannins based on the Folin- Denis reaction. The procedure minimizes the main drawbacks related to the AOAC batch procedure, i.e. interferences from reducing species in the samples, high reagent consumption and waste generation, and low sampling rate. Linear response was observed for tannic acid concentrations in the range 2-100 mg L-1, with a detection limit (99.7% confidence level) of 0.3 mg L-1. The sampling rate and coefficient of variation (n = 10) were estimated as 75 measurements per hour and 1.1%, respectively. Results of determination of total tannin in tea, beer and wine samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. In comparison to the batch procedure, the reagent consumption and effluent generation were 83 and 60-fold lower, respectively.
Resumo:
Due to its outstanding flexibility, batch distillation is still widely used in many separation processes. In the present work, a comparison between constant and variable reflux operations is studied. Firstly, a mathematical model is developed and then validated through comparison between predicted and experimental results accomplished in a lab-scale apparatus. Therefore, case studies are performed through mathematical simulations. It is noted that the most economical form of batch distillation is at constant overhead product composition, keeping the flow rate of vapor from the top of the column constant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes an integrated methodology for modelling froth zone performance in batch and continuously operated laboratory flotation cells. The methodology is based on a semi-empirical approach which relates the overall flotation rate constant to the froth depth (FD) in the flotation cell; from this relationship, a froth zone recovery (R,) can be extracted. Froth zone recovery, in turn, may be related to the froth retention time (FRT), defined as the ratio of froth volume to the volumetric flow rate of concentrate from the cell. An expansion of this relationship to account for particles recovered both by true flotation and entrainment provides a simple model that may be used to predict the froth performance in continuous tests from the results of laboratory batch experiments. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we report our modelling evaluation on the effect of tracer density on axial dispersion in a batch oscillatory baffled column (OBC). Tracer solution of potassium nitrite, its specific density ranged from 1.0 to 1.5, was used in the study, and was injected to the vertical column from either the top or bottom. Local concentration profiles are measured using conductivity probes at two locations along the height of the column. Using the experimental measured concentration profiles together with both 'Tank-in-Series' and 'Plug Flow with Axial Dispersion' models, axial dispersion coefficients were determined and used to describe the effect of specific tracer density on mixing in the OBC. The results showed that the axial dispersion coefficients evaluated by the two models are very similar in both magnitudes and trends, and the range of variations in such coefficients is generally larger for the bottom injection than for the top one. Empirical correlations linking the mechanical energy for mixing, the specific density of tracer and axial dispersion coefficient were established. Using these correlations, we identified the enhancements of up to 269% on axial dispersion for various specific tracer densities. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.
Resumo:
Both dynamic and fed-batch systems have been used for the study of biofilms. Dynamic systems, whose hallmark is the presence of continuous flow, have been considered the most appropriate for the study of the last stage of the biofilm lifecycle: biofilm disassembly. However, fed-batch is still the most used system in the biofilm research field. Hence, we have used a fed-batch system to collect cells released from Staphylococcus epidermidis biofilms, one of the most important etiological agents of medical device-associated biofilm infections. Herein, we showed that using this model it was possible to collect cells released from biofilms formed by 12 different S. epidermidis clinical and commensal isolates. In addition, our data indicated that biofilm disassembly occurred by both passive and active mechanisms, although the last occurred to a lesser extent. Moreover, it was observed that S. epidermidis biofilm-released cells presented higher tolerance to vancomycin and tetracycline, as well as a particular gene expression phenotype when compared with either biofilm or planktonic cells. Using this model, biofilm-released cells phenotype and their interaction with the host immune system could be studied in more detail, which could help providing significant insights into the pathophysiology of biofilm-related infections.
Resumo:
[Excerpt] Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) has been widely used for biomedical purposes because of its exceptional biocompatibility, bioactivity and osteoconductivity [1]. As these properties are directly related to HAp particles characteristics (size, morphology and purity), a very good control of the reaction conditions is required to obtain particles with the desired properties. Usually, HAp is synthesized by wet chemical precipitation in stirred tank batch reactors that often lead to inconsistencies in product specifications due to their low mixing efficiency [2]. (...)
Resumo:
Production flow analysis (PFA) is a well-established methodology used for transforming traditional functional layout into product-oriented layout. The method uses part routings to find natural clusters of workstations forming production cells able to complete parts and components swiftly with simplified material flow. Once implemented, the scheduling system is based on period batch control aiming to establish fixed planning, production and delivery cycles for the whole production unit. PFA is traditionally applied to job-shops with functional layouts, and after reorganization within groups lead times reduce, quality improves and motivation among personnel improves. Several papers have documented this, yet no research has studied its application to service operations management. This paper aims to show that PFA can well be applied not only to job-shop and assembly operations, but also to back-office and service processes with real cases. The cases clearly show that PFA reduces non-value adding operations, introduces flow by evening out bottlenecks and diminishes process variability, all of which contribute to efficient operations management.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
A flow injection method for the quantitative analysis of vancomycin hydrochloride, C66H75Cl2N9O24.HCl (HVCM), based on the reaction with copper (II) ions, is presented. HVCM forms a lilac-blue complex with copper ions at pH≅4.5 in aqueous solutions, with maximum absorption at 555 nm. The detection limit was estimated to be about 8.5×10-5 mol L-1; the quantitation limit is about 2.5×10-4 mol L-1 and about 30 determinations can be performed in an hour. The accuracy of the method was tested through recovery procedures in presence of four different excipients, in the proportion 1:1 w/w. The results were compared with those obtained with the batch spectrophotometric and with the HPLC methods. Statistical comparison was done using the Student's procedure. Complete agreement was found at a 0.95 significance level between the proposed flow injection and the batch spectrophotometric methods, which present similar precision (RSD: 2.1 % vs. 1.9%).
Resumo:
Flow injection (FI) methodology, using diffuse reflectance in the visible region of the spectrum, for the analysis of total sulfur in the form of sulfate, precipitated in the form of barium sulfate, is presented. The method was applied to biodiesel, to plant leaves and to natural waters analysis. The analytical signal (S) correlates linearly with sulfate concentration (C) between 20 and 120 ppm, through the equation S=-1.138+0.0934 C (r = 0.9993). The experimentally observed limit of detection is about 10 ppm. The mean R.S.D. is about 3.0 %. Real samples containing sulfate were analyzed and the results obtained by the FI and by the reference batch turbidimetric method using the statistical Student's t-test and F-test were compared.
Resumo:
The aim of this study was to evaluate the efficiency of a sequencing batch reactor (SBR) on biological removal of nitrogen from cattle slaughterhouse wastewater by nitrification/denitrification processes. The effects of initial concentration of ammoniacal nitrogen were investigated at 100; 150 and 200 mg L-1 and air flow rate at 0.125; 0.375 and 0.625 L min¹ Lreactor-1 on the nitrogen compounds removal, by a Central Composite Rotational Design (CCRD) configuration. There were variations from 9.2 to 94.9%, 4.0 to 19.6% and 20.8 to 92.0% in the conversion of ammoniacal nitrogen to nitrate and nitrite concentration and removal of total nitrogen, respectively. The increase of air flow rate and decrease of the initial concentration of ammoniacal nitrogen resulted in higher efficiencies of total nitrogen removal, as well as the conversion of ammoniacal nitrogen to nitrate. During the pre-established intervals of this study, the removal and conversion efficiencies of nitrogen compounds above 85% were achieved in air flow rate variations from 0.375 to 0.725 L min-1 Lreactor-1 and initial concentration of ammoniacal nitrogen from 80 to 200 mg L-1. On denitrification process, we obtained efficiencies from 91.5 to 96.9% on the removal of nitrite/nitrate and from 78.3 to 87.9% on the removal of organic matter.
Resumo:
Affiliation: Faculté de médecine, Université de Montréal & CANVAC