986 resultados para Flow reactors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomethanation of herbaceous biomass feedstock has the potential to provide clean energy source for cooking and other activities in areas where such biomass availability predominates. A biomethanation concept that involves fermentation of biomass residues in three steps, occurring in three zones of the fermentor is described. This approach while attempting take advantage of multistage reactors simplifies the reactor operation and obviates the need for a high degree of process control or complex reactor design. Typical herbaceous biomass decompose with a rapid VFA flux initially (with a tendency to float) followed by a slower decomposition showing balanced process of VFA generation and its utilization by methanogens that colonize biomass slowly. The tendency to float at the initial stages is suppressed by allowing previous days feed to hold it below digester liquid which permits VFA to disperse into the digester liquid without causing process inhibition. This approach has been used to build and operate simple biomass digesters to provide cooking gas in rural areas with weed and agro-residues. With appropriate modifications, the same concept has been used for digesting municipal solid wastes in small towns where large fermentors are not viable. With further modifications this concept has been used for solid-liquid feed fermentors. Methanogen colonized leaf biomass has been used as biofilm support to treat coffee processing wastewater as well as crop litter alternately in a year. During summer it functions as a biomass based biogas plants operating in the three-zone mode while in winter, feeding biomass is suspended and high strength coffee processing wastewater is let into the fermentor achieving over 90% BOD reduction. The early field experience of these fermentors is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the flow due to a rotating disk non-symmetrically placed with respect to the height of the enclosing stationary cylinder is analyzed numerically. The full Navier-Stokes equations expressed in terms of stream function and vorticity are solved by successive over-relaxation for different disk radii, its distance from the bottom casing and rotational Reynolds numbers. It is observed that the flow pattern is strongly influenced by the size and the position of the disk. When the disk is very close to the top casing and small in radius, there are two regions of different scales and the vortices in the region of small scale are trapped between the disk and the top casing. Further, the variation of the moment coefficient is determined for different positions and sizes of the rotating disk. The calculations shows that the frictional torque increases rapidly, when the disk approaches the top casing. This finding is of importance for the design of vertical rotating disk reactors applied in chemical vapor deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. The performance achievable by the unity conversion ratio cores of these reactors was compared to an existing supercritical carbon dioxide-cooled (S-CO2) fast reactor design and an uprated version of an existing sodium-cooled fast reactor. All concepts have cores rated at 2400 MWt. The cores of the liquid-cooled reactors are placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchangers (IHXs) coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. The S-CO2 reactor is directly coupled to the S-CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced reactor vessel auxiliary cooling system (RVACS) and a passive secondary auxiliary cooling system (PSACS). The selection of the water-cooled versus air-cooled heat sink for the PSACS as well as the analysis of the probability that the PSACS may fail to complete its mission was performed using risk-informed methodology. In addition to these features, all reactors were designed to be self-controllable. Further, the liquid-cooled reactors utilized common passive decay heat removal systems whereas the S-CO2 uses reliable battery powered blowers for post-LOCA decay heat removal to provide flow in well defined regimes and to accommodate inadvertent bypass flows. The multiple design limits and challenges which constrained the execution of the four fast reactor concepts are elaborated. These include principally neutronics and materials challenges. The neutronic challenges are the large positive coolant reactivity feedback, small fuel temperature coefficient, small effective delayed neutron fraction, large reactivity swing and the transition between different conversion ratio cores. The burnup, temperature and fluence constraints on fuels, cladding and vessel materials are elaborated for three categories of material - materials currently available, available on a relatively short time scale and available only with significant development effort. The selected fuels are the metallic U-TRU-Zr (10% Zr) for unity conversion ratio and TRU-Zr (75% Zr) for zero conversion ratio. The principal selected cladding and vessel materials are HT-9 and A533 or A508, respectively, for current availability, T-91 and 9Cr-1Mo steel for relatively short-term availability and oxide dispersion strengthened ferritic steel (ODS) available only with significant development. © 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results of a feasibility study aimed at developing a zero-transuranic-discharge fuel cycle based on the U-Th-TRU ternary cycle. The design objective is to find a fuel composition (mixture of thorium, enriched uranium, and recycled transuranic components) and fuel management strategy resulting in an equilibrium charge-discharge mass flow. In such a fuel cycle scheme, the quantity and isotopic vector of the transuranium (TRU) component is identical at the charge and discharge time points, thus allowing the whole amount of the TRU at the end of the fuel irradiation period to be separated and reloaded into the following cycle. The TRU reprocessing activity losses are the only waste stream that will require permanent geological storage, virtually eliminating the long-term radiological waste of the commercial nuclear fuel cycle. A detailed three-dimensional full pressurized water reactor (PWR) core model was used to analyze the proposed fuel composition and management strategy. The results demonstrate the neutronic feasibility of the fuel cycle with zero-TRU discharge. The amount of TRU and enriched uranium loaded reach equilibrium after about four TRU recycles. The reactivity coefficients were found to be within a range typical for a reference PWR core. The soluble boron worth is reduced by a factor of ∼2 from a typical PWR value. Nevertheless, the results indicate the feasibility of an 18-month fuel cycle design with an acceptable beginning-of-cycle soluble boron concentration even without application of burnable poisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport phenomena in radial flow metalorganic chemical vapor deposition (MOCVD) reactor with three concentric vertical inlets are studied by two-dimensional numerical modeling. By varying the parameters such as gas pressure, flow rates combination of multi-inlets, geometric shapes and sizes of reactor and flow distributor, temperatures of susceptor and ceiling, and susceptor rotation, the corresponding velocity, temperature, and concentration fields inside the reactor are obtained; the onset and change of flow recirculation cells under influences of those parameters are determined. It is found that recirculation cells, originated from flow separation near the bend of reactor inlets, are affected mainly by the reactor height and shape, the operating pressure, the flow rates combination of multi-inlets, and the mean temperature between susceptor and ceiling. By increasing the flow rate of mid-inlet and the mean temperature, decreasing the pressure, maintaining the reactor height below certain criteria, and trimming the bends of reactor wall and flow distributor to streamlined shape, the recirculation cells can be minimized so that smooth and rectilinear flow prevails in the susceptor region, which corresponds to smooth and rectilinear isotherms and larger reactant concentration near the susceptor. For the optimized reactor shape, the reactor size can be enlarged to diameter D = 40 cm and height H = 2 cm without flow recirculation. The susceptor rotation over a few hundred rpm around the reactor central axis will induce the recirculation cell near the exit and deflect the streamlines near the susceptor, which is not the case for vertical reactors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capillary micro reactor, with four stable operating flow patterns and a throughput range from grams per hour to kilograms per hour, presents an attractive alternative to chip-based and microstructured reactors for laboratory- and pilot-scale applications. In this article, results for the extraction of 2-butanol from toluene under different flow patterns in a water/toluene flow in long capillary microreactors are presented. The effects of the capillary length (0.4-2.2 m), flow rate (0.1-12 mL/min), and aqueous-to-organic volumetric flow ratio (0.25-9) on the slug, bubbly, parallel, and annular flow hydrodynamics were investigated. Weber-number-dependent flow maps were composed for capillary lengths of 0.4 and 2 m that were used to interpret the flow pattern formation in terms of surface tension and inertia forces. When the capillary length was decreased from 2 to 0.4 m, a transition from annular to parallel flow was observed. The capillary length had little influence on slug and bubbly flows. The flow patterns were evaluated in terms of stability, surface-to-volume ratio, throughput, and extraction efficiency. Slug and bubbly flow operations yielded 100% thermodynamic extraction efficiency, and increasing the aqueous-to-organic volumetric ratio to 9 allowed for 99% 2-butanol extraction. The parallel and annular flow operating windows were limited by the capillary length, thus yielding maximum 2-butanol extractions of 30% and 47% for parallel and annular flows, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is focused on the demonstration of the advantages of miniaturized reactor systems which are essential for processes where potential for considerable heat transfer intensification exists as well as for kinetic studies of highly exothermic reactions at near-isothermal conditions. The heat transfer characteristics of four different cross-flow designs of a microstructured reactor/heat-exchanger (MRHE) were studied by CFD simulation using ammonia oxidation on a platinum catalyst as a model reaction. An appropriate distribution of the nitrogen flow used as a coolant can decrease drastically the axial temperature gradient in the reaction channels. In case of a microreactor made of a highly conductive material, the temperature non-uniformity in the reactor is strongly dependent on the distance between the reaction and cooling channels. Appropriate design of a single periodic reactor/heat-exchanger unit, combined with a non-uniform inlet coolant distribution, reduces the temperature gradients in the complete reactor to less than 4degreesC, even at conditions corresponding to an adiabatic temperature rise of about 1400degreesC, which are generally not accessible in conventional reactors because of the danger of runaway reactions. To obtain the required coolant flow distribution, an optimization study was performed to acquire the particular geometry of the inlet and outlet chambers in the microreactor/heat-exchanger. The predicted temperature profiles are in good agreement with experimental data from temperature sensors located along the reactant and coolant flows. The results demonstrate the clear potential of microstructured devices as reliable instruments for kinetic research as well as for proper heat management in the case of highly exothermic reactions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L- 1 (0.018 mg TRP L- 1) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km- 2 to 4.6 km- 2 and 13.8 km- 2 to 17.2 km- 2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combination of milli-scale processing and microwave heating has been investigated for the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were designed and applied in the Cu-catalyzed Ullmann-type CO coupling of phenol and 4-chloropyridine. In a batch reactor the results show clearly increased yields for the microwave heated process at low microwave powers, whereas high powers and catalyst loadings reduced the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-coated as compared to the Cu/TiO fixed-bed flow-reactor. The benefit here is that the reaction occurs at the surface of the metal nanoparticles confined within a support film making the nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and coke formation; however, at longer process times leaching played a significant role. Catalyst activity could partially be recovered by removal of deposited by-product by means of calcination. After 6h on-stream the reactor productivities were 28.3 and 55.1kgprod/(mR3h) for the fresh Cu/ZnO wall-coated and Cu/TiO fixed-bed reactor, respectively. Comparison of single- and multimode microwaves showed a threefold yield increase for single-mode microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a single-mode microwave field and provides a novel solution to a major problem for combining metal catalysis and microwave heating. Catalyst stability appeared to be more important and provided twofold yield increase for the CuZn/TiO catalyst as compared to the Cu/TiO catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a threefold yield increase was observed in single-mode microwaves which, to the best of our knowledge, led to a not yet reported productivity of 172kgprod/(mR3h) for the microwave and flow Ullmann CO coupling. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 mu m were dissolved in pH 3, HCl at 25 degrees C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 X 10(-10) mol(feldspar) m(-2) s(-1), rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 X 10(-10) mol(feldspar) m(-2) s(-1) and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 mol(feldspar) g(-1) s(-1). For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 X 10(-12) mol(biotite) m(-2) s(-1), rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 X 10(-12) mol(biotite) m(-2) s(-1), rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 x 10(-12) mol(biotite) m(-2) s(-1) and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 X 10(-12) mol(biotite) g(-1) s(-1). For all normalising terms rates varied significantly (p <= 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over wich they would change significantly. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The malate dehydrogenase (MDH) and ascorbate oxidase were immobilized independently, onto silanized controlled porous silica and packed in a tygon tube. The reactors were inserted in the flow system, and the malic acid was determined by measurement of NADH produced by enzymatic reaction. The NADH was reoxidized in a wall jet cell that consisted of spectrographic graphite, Ag/AgCl, KCl(sat), and steel needle as work, reference, and counter electrodes, respectively. The current intensities were measured at 390 mV. The malate calibration curve shows a linear range from 5.0 x 10(-6) to 1.0 x 10(-4) molL(-1), the lifetime was 40 analyses, after that a decrease of 20% on the response is observed. Three different citric juices were analyzed and a good correlation between the proposed method and spectrophotometric commercial kit were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antibiotics sulfamethoxazole (SMTX) and ciprofloxacin (CIP) are commonly used in human and veterinary medicine, which explains their occurrence in wastewater. Anaerobic reactors are low-cost, simple and suitable technology to wastewater treatment, but there is a lack of studies related to the removal efficiency of antibiotics. To overcome this knowledge gap, the objective of this study was to evaluate the removal kinetics of SMTX and CIP using a horizontal-flow anaerobic immobilized biomass reactor. Two different concentrations were evaluated, for SMTX 20 and 40 μg L(-1); for CIP 2.0 and 5.0 μg L(-1). The affluent and effluent analysis was carried out in liquid chromatography/tandem mass spectrometry (LC-MS/MS) with the sample preparation procedure using an off-line solid-phase extraction. This method was developed, validated and successfully applied for monitoring the affluent and effluent samples. The removal efficiency found for both antibiotics at the two concentrations studied was 97%. Chemical oxygen demand (COD) exhibited kinetic constants that were different from that observed for the antibiotics, indicating the absence of co-metabolism. Also, though the antibiotic concentration was increased, there was no inhibitory effect in the removal of COD and antibiotics.