45 resultados para Florações
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of cyanobacterial blooms in reservoirs intended for supply to the population can create public health problems for many species could produce potentially toxic compounds and these are not eliminated in the conventional procedures used in water treatment plants. So even in amounts less than the maximum allowable limit imposed by MS, cyanotoxins can be present in drinking water distributed to the population, creating a chronic exposure. There is little information about the long-term effects of oral exposure to cyanotoxins. This work aimed to show the exposure orally (v.o) of animals to a crude extract of cyanobacteria containing cyanotoxins to evaluate the reproductive performance of pregnant rats and their offspring and fertility of male rats. The presence of microcystins (MCs) in samples collected during the flowering processes in freshwater reservoirs in the Rio Grande do Norte, was analyzed by enzyme immunoassay and its variants have been identified and quantified by chromatographic methods. It was observed that by administration v.o. cyanobacterial extract containing MCs (40, 100 or 250 ng of MCs / kg / day) did not cause systemic toxicity in adult rats or effect on reproductive performance of male and female rats treated. It was also not observed any changes in skeletal study in the offspring of pregnant rats treated with the extract above. Because the solutions used contained MCs in a concentration equal to or greater than the tolerable daily intake for MCs, the results suggest, therefore, that the development of this work contributed to better assess public health risk as the oral exposure to cyanotoxins, increasing thus the credibility of the maximum allowable limit (LMP) of MCs in drinking water distributed to the population of several countries that use the LMP established by WHO in its legislation
Resumo:
The increasing of pollution in aquatic ecosystems in the last decades has caused an expansion of eutrophication and loss of water quality for human consumption. The increase of frequency and intensity of cyanobacteria blooms have been recognized as a major problem connected to water quality and eutrophication. The knowledge of environmental factors controlling these blooms is a key step towards the management for recovering aquatic ecosystems from eutrophic conditions. Primary productivity in aquatic ecosystems is dependent on light and nutrients availability. In the present work we evaluated the relative importance of the concentration of major nutrients, such as phosphorus and nitrogen, and light for phytoplankton growth in the main water reservoir of Rio Grande do Norte State, named Engenheiro Armando Ribeiro Gonçalves (EARG), which is an eutrophic system, dominated by potentially toxic cyanobacteria populations. Limitation of phytoplankton growth was evaluated through bioassays using differential enrichment of nutrients (N and/or P) under two light conditions (low light and high light) and monthly monitoring of chlorophyll-a and nutrients (total nitrogen and phosphorus) concentrations, and water transparency (Secchi depth) at the pelagic region. Our results confirm that EARG reservoir is an eutrophic system with a low water quality. Results of bioassays on the growth of phytoplankton limitation (N or P) were conflicting with the results predicted by the TN:TP ratios, which indicates that these ratios were not a good indicator of algal growth limitation. Nitrogen was the limiting nutrient, considering both frequency and magnitude. Light and hidrology affected phytoplankton response to nutrient enrichment. The extreme eutrophic conditions of this reservoir, dominated by cyanobacteria blooms, demand urgent managing strategies in order to guarantee the multiple uses for this system, including water supply for human population. Although nitrogen is the limiting nutrient, an effective management program must focus on the reduction of both phosphorus and nitrogen input
Resumo:
Eutrophication has been listed as one of the main problems of water pollution on a global level. In the Brazilian semi-arid areas this problem takes even greater proportions due to characteristical water scarcity of the region. It is extremely important to the predictive eutrophication models development and to the reservoirs management in the semi-arid region, studies that promotes understanding of the mechanisms responsible for the expansion and control of algae blooms, essential for improving the water quality of these environments. The present study had as its main aims, evaluate the temporal pattern of trophic state, considering the influence of nutrients (N and P) and the light availability in the water column in the development of phytoplankton biomass, and perform the mathematical modelling of changes in phosphorus and chlorophyll a concentrations in the Cruzeta man-made lake located on Seridó, a typical semi-arid region of Rio Grande do Norte. To this, a fortnightly monitoring was performed in the reservoir in 05 stations over the months of March 2007 to May 2008. Were measured the concentrations of total phosphorus, total organic nitrogen, chlorophyll a, total, fixed and volatile suspended solids, as well as the measure of transparency (Secchi) and the profiles of photosynthetic active radiation (PAR), temperature, pH, dissolved oxygen and electrical conductivity in the water column. Measurements of vertical profiles have shown some periods of chemical and thermal stratification, especially in the rainy season, due to increased water column depth, however, the reservoir can be classified as warm polimitic. During the study period the reservoir was characterized as eutrophic considering the concentrations of phosphorus and most of the time as mesotrophic, based on the concentrations of chlorophyll a, according to the Thornton & Rast (1993) classification. The N:P relations suggest N limitation, conversely, significant linear relationship between the algae biomass and nutrients (N and P) were not observed in our study. However, a relevant event was the negative and significant correlation presented by Kt and chlorophyll a (r ² = 0.83) at the end of the drought of 2007 and the rainy season of 2008, and the algal biomass collapse observed at the end of the drought season (Dec/07). The equation used to simulate the change in the total phosphorus was not satisfactory, being necessary inclusion of parameters able to increase the power of the model prediction. The chlorophyll a simulation presented a good adjustment trend, however there is a need to check the calibrated model parameters and subsequent equation validation
Resumo:
The potentially toxic cyanobacterial blooms in water bodies are spread across the globe, resulting in the loss of water quality and adverse effects on human health. In arid and semiarid regions, the hydrologic regime characterized by an annual cycle of drought and rain, change the volume and the retention time of the reservoir. Such changes affect the limnological characteristics and causing changes in composition and biomass community of cyanobacteria. The reservoir Cruzeta (Zmax = 8.7 m) is a eutrophic water supply source located in the semiarid tropical (Northeast Brazil). Raised the hypothesis that the hydrological regime of semi-arid tropical is a determining factor in the availability of resources in eutrophic water sources, which influences the composition of dominant species of cyanobacteria. The aim of this study was to analyze the changes in biomass and species composition of cyanobacteria for two annual hydrological cycles and evaluate factors drivers. The study was divided into five distinct periods (dry 2010, rain 2011, dry 2011, rain 2012, dry 2012). The dominant group found in all periods was Cyanobacteria (99% of total biomass), which contributed to the low diversity. The filamentous species Cylindrospermopsis raciborskii was present at both points in almost every study. The colonial species Microcystis panniformis and Sphaerocavum brasiliensis dominated only in periods with lower volumes of water. The diatoms contribute more to the biomass during the period of severe drought. The point near the dam (P1) had phytoplankton biomass larger than the point near the tributary (P2). The dominant species of colonial cyanobacteria lasted until the overflow in P1, and P2 this dominance was until the first rains. The redundancy analysis indicated that physical factors such as light availability and water level were the main factors driving the seasonal succession of phytoplankton. The composition of phytoplankton in spring was alternated by species of filamentous cyanobacteria in conditions of poor stability of the water column, such as Cylindrospermopsis raciborskii, and colonial species under conditions of high stability of the water column, such as Microcystis panniformis and Sphaerocavum brasiliensis. The extremes of torrential rains and severe droughts, governed by the hydrological regime of the semi-arid region led to the availability of resources in the watershed, directing the spatial and temporal dynamics of phytoplankton in the reservoir Cruzeta
Resumo:
A variação espacial e temporal de rotíferos foi analisada em um reservatório pequeno, raso e eutrófico, com intensas florações de algas Cyanobacteria, em sete pontos de amostragem durante 17 meses (março/2002 a julho/2003). Foram identificados 52 táxons em 16 famílias, sendo Brachionidade, Conochilidae, Synchaetidae, Lecanidae, Collothecidae, Trichocercidae e Gastropodidae as mais frequentes. Collotheca sp. foi abundante no inverno (período seco), enquanto Conochilus coenobasis Skorikov, 1914 e Keratella cochlearis Gosse, 1851 apresentaram baixas abundâncias. Brachionus mirus var. reductus (Koste, 1972), Filinia longiseta (Ehrenberg, 1834) e Keratella lenzi (Hauer, 1953) apresentaram picos de abundância no verão (período chuvoso), e Kellicottia bostonensis (Rousselet, 1908), Ploesoma truncatum (Levander, 1894), Polyarthra remata (Skorikov, 1896), Polyarthra vulgaris Carlin, 1943 e Ptygura sp. no inverno, entretanto, relacionados a chuvas atípicas. Diferenças significativas do número de táxons e da abundância total dos rotíferos ocorreram entre os meses amostrados. A análise de correspondência canônica explicou 46% da relação da abundância dos rotíferos e variáveis ambientais, correlacionados com a pluviosidade, nitrito, temperatura da água, nitrogênio orgânico, nitrato e temperatura do ar. Houve flutuações na abundância dos rotíferos um mês após oscilações na abundância do fitoplâncton. A maior parte das correlações entre as abundâncias de espécies de rotíferos e do fitoplâncton foi positiva. Alguns táxons como Filinia longiseta, Keratella lenzi e K. cochlearis apresentaram variação temporal definida e semelhante a outros reservatórios eutróficos. A ausência de padrões claros de distribuição em algumas espécies foi atribuída a hidrodinâmica do reservatório, o qual foi construído recentemente, e as condições climáticas adversas durante o período de estudo, como as chuvas intensas no inverno.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Algae bloom is one of the major consequences of the eutrophication of aquatic systems, including algae capable of producing toxic substances. Among these are several species of cyanobacteria, also known as blue-green algae, that have the capacity to adapt themselves to changes in the water column. Thus, the horizontal distribution of cyanobacteria harmful algae blooms (CHABs) is essential, not only to the environment, but also for public health. The use of remote sensing techniques for mapping CHABs has been explored by means of bio-optical modeling of phycocyanin (PC), a unique inland waters cyanobacteria pigment. However, due to the small number of sensors with a spectral band of the PC absorption feature, it is difficult to develop semi-analytical models. This study evaluated the use of an empirical model to identify CHABs using TM and ETM+ sensors aboard Landsat 5 and 7 satellites. Five images were acquired for applying the model. Besides the images, data was also collected in the Guarapiranga Reservoir, in São Paulo Metropolitan Region, regarding the cyanobacteria cell count (cells/mL), which was used as an indicator of CHABs biomass. When model values were analyzed excluding calibration factors for temperate lakes, they showed a medium correlation (R²=0.81, p=0.036), while when the factors were included the model showed a high correlation (R²=0.96, p=0.003) to the cyanobacteria cell count. The empirical model analyzed proved useful as an important tool for policy makers, since it provided information regarding the horizontal distribution of CHABs which could not be acquired from traditional monitoring techniques.