765 resultados para Flood risk management
Resumo:
Standard procedures for forecasting flood risk (Bulletin 17B) assume annual maximum flood (AMF) series are stationary, meaning the distribution of flood flows is not significantly affected by climatic trends/cycles, or anthropogenic activities within the watershed. Historical flood events are therefore considered representative of future flood occurrences, and the risk associated with a given flood magnitude is modeled as constant over time. However, in light of increasing evidence to the contrary, this assumption should be reconsidered, especially as the existence of nonstationarity in AMF series can have significant impacts on planning and management of water resources and relevant infrastructure. Research presented in this thesis quantifies the degree of nonstationarity evident in AMF series for unimpaired watersheds throughout the contiguous U.S., identifies meteorological, climatic, and anthropogenic causes of this nonstationarity, and proposes an extension of the Bulletin 17B methodology which yields forecasts of flood risk that reflect climatic influences on flood magnitude. To appropriately forecast flood risk, it is necessary to consider the driving causes of nonstationarity in AMF series. Herein, large-scale climate patterns—including El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO)—are identified as influencing factors on flood magnitude at numerous stations across the U.S. Strong relationships between flood magnitude and associated precipitation series were also observed for the majority of sites analyzed in the Upper Midwest and Northeastern regions of the U.S. Although relationships between flood magnitude and associated temperature series are not apparent, results do indicate that temperature is highly correlated with the timing of flood peaks. Despite consideration of watersheds classified as unimpaired, analyses also suggest that identified change-points in AMF series are due to dam construction, and other types of regulation and diversion. Although not explored herein, trends in AMF series are also likely to be partially explained by changes in land use and land cover over time. Results obtained herein suggest that improved forecasts of flood risk may be obtained using a simple modification of the Bulletin 17B framework, wherein the mean and standard deviation of the log-transformed flows are modeled as functions of climate indices associated with oceanic-atmospheric patterns (e.g. AMO, ENSO, NAO, and PDO) with lead times between 3 and 9 months. Herein, one-year ahead forecasts of the mean and standard deviation, and subsequently flood risk, are obtained by applying site specific multivariate regression models, which reflect the phase and intensity of a given climate pattern, as well as possible impacts of coupling of the climate cycles. These forecasts of flood risk are compared with forecasts derived using the existing Bulletin 17B model; large differences in the one-year ahead forecasts are observed in some locations. The increased knowledge of the inherent structure of AMF series and an improved understanding of physical and/or climatic causes of nonstationarity gained from this research should serve as insight for the formulation of a physical-casual based statistical model, incorporating both climatic variations and human impacts, for flood risk over longer planning horizons (e.g., 10-, 50, 100-years) necessary for water resources design, planning, and management.
Resumo:
Purpose – The UK has experienced a number of flood events in recent years, and the intensity and frequency of such events are forecast to further increase in future due to changing climatic conditions. Accordingly, enhancing the resilience of small and medium-sized enterprises (SMEs) – which form an important segment in a society – to flood risk, has emerged as an important issue. However, SMEs often tend to underestimate the risk of flooding which tends to have a low priority in their business agenda. The purpose of this paper is to undertake an investigation of adaptation to the risk of flooding considering community-level measures, individual-level property protection, and business continuity and resilience measures. Design/methodology/approach – A total of four short case studies were conducted among SMEs to identify their response to flood risk, and what measures have been undertaken to manage the risk of flooding. Findings – It was observed that SMEs have implemented different property-level protection measures and generic business continuity/risk management measures, based on their requirements, to achieve a desired level of protection. Practical implications – SMEs are likely to positively respond to property-level adaptation following a post-flood situation. It is important that information such as costs/benefits of such measures and different options available are made accessible to SMEs affected by a flood event. Social implications – Implementation of property-level adaptation measures will contribute towards the long term adaptation of the existing building stock to changing climatic conditions. Originality/value – The paper contributes towards policy making on flood risk adaptation and SME decision making, and informs policy makers and practitioners.
Resumo:
Global climate change is predicted to have impacts on the frequency and severity of flood events. In this study, output from Global Circulation Models (GCMs) for a range of possible future climate scenarios was used to force hydrologic models for four case study watersheds built using the Soil and Water Assessment Tool (SWAT). GCM output was applied with either the "delta change" method or a bias correction. Potential changes in flood risk are assessed based on modeling results and possible relationships to watershed characteristics. Differences in model outputs when using the two different methods of adjusting GCM output are also compared. Preliminary results indicate that watersheds exhibiting higher proportions of runoff in streamflow are more vulnerable to changes in flood risk. The delta change method appears to be more useful when simulating extreme events as it better preserves daily climate variability as opposed to using bias corrected GCM output.
Resumo:
Current procedures for flood risk estimation assume flood distributions are stationary over time, meaning annual maximum flood (AMF) series are not affected by climatic variation, land use/land cover (LULC) change, or management practices. Thus, changes in LULC and climate are generally not accounted for in policy and design related to flood risk/control, and historical flood events are deemed representative of future flood risk. These assumptions need to be re-evaluated, however, as climate change and anthropogenic activities have been observed to have large impacts on flood risk in many areas. In particular, understanding the effects of LULC change is essential to the study and understanding of global environmental change and the consequent hydrologic responses. The research presented herein provides possible causation for observed nonstationarity in AMF series with respect to changes in LULC, as well as a means to assess the degree to which future LULC change will impact flood risk. Four watersheds in the Midwest, Northeastern, and Central United States were studied to determine flood risk associated with historical and future projected LULC change. Historical single framed aerial images dating back to the mid-1950s were used along with Geographic Information Systems (GIS) and remote sensing models (SPRING and ERDAS) to create historical land use maps. The Forecasting Scenarios of Future Land Use Change (FORE-SCE) model was applied to generate future LULC maps annually from 2006 to 2100 for the conterminous U.S. based on the four IPCC-SRES future emission scenario conditions. These land use maps were input into previously calibrated Soil and Water Assessment Tool (SWAT) models for two case study watersheds. In order to isolate effects of LULC change, the only variable parameter was the Runoff Curve Number associated with the land use layer. All simulations were run with daily climate data from 1978-1999, consistent with the 'base' model which employed the 1992 NLCD to represent 'current' conditions. Output daily maximum flows were converted to instantaneous AMF series and were subsequently modeled using a Log-Pearson Type 3 (LP3) distribution to evaluate flood risk. Analysis of the progression of LULC change over the historic period and associated SWAT outputs revealed that AMF magnitudes tend to increase over time in response to increasing degrees of urbanization. This is consistent with positive trends in the AMF series identified in previous studies, although there are difficulties identifying correlations between LULC change and identified change points due to large time gaps in the generated historical LULC maps, mainly caused by unavailability of sufficient quality historic aerial imagery. Similarly, increases in the mean and median AMF magnitude were observed in response to future LULC change projections, with the tails of the distributions remaining reasonably constant. FORE-SCE scenario A2 was found to have the most dramatic impact on AMF series, consistent with more extreme projections of population growth, demands for growing energy sources, agricultural land, and urban expansion, while AMF outputs based on scenario B2 showed little changes for the future as the focus is on environmental conservation and regional solutions to environmental issues.
Resumo:
A shortage of affordable housing is a major problem in Australia today. This is mainly due to the limited supply of affordable housing that is provided by the non-government housing sector. Some private housing developers see the provision of affordable housing for lower income people as a high risk investment which offers a lower return than broader market-based housing. The scarcity of suitable land, a limited government ‘subsidy’, and increasing housing costs have not provided sufficient development incentives to encourage their investment despite the existing high demand for affordable housing. This study analyses the risk management process conducted by some private and not-for-profit housing providers in South East Queensland, and draws conclusions about the relationship between risk assessments/responses and past experiences. In-depth interviews of selected non-government housing providers have been conducted to facilitate an understanding of their approach to risk assessment/response in developing and in managing affordable housing projects. These developers use an informal risk management process as part of their normal business process in accordance with industry standards. A simple qualitative matrix has been used to analyse probability and impacts using a qualitative scale - low, medium and high. For housing providers who have considered investing in affordable housing but have not yet implemented any such projects, affordable housing development is seen as an opportunity that needs to be approached with caution. The risks associated with such projects and the levels of acceptance of these are not consistently identified by current housing providers. Many interviewees agree that the recognition of financial risk and the fear of community rejection of such housing projects have restrained them from committing to such investment projects. This study suggests that implementing improvements to the risk mitigation and management framework may assist in promoting the supply of affordable housing by non-government providers.
Resumo:
Purpose: The purpose of this paper is to analyse the risk management process conducted by some private and not-for-profit affordable housing providers in South East Queensland, and draw conclusions about the relationship between risk assessments/responses and past experiences.----- Design/methodology/approach: In-depth interviews of selected non-government housing providers have been conducted to facilitate an understanding of their approach to risk assessment in developing and in managing affordable housing projects. Qualitative data are analysed using thematic analysis to find emerging themes suggested by interview participants.----- Findings: The paper finds that informal risk management process is used as part of normal business process in accordance with industry standards. Many interviewees agree that the recognition of financial risk and the fear of community rejection of such housing projects have restrained them from committing to such investment projects. The levels of acceptance of risk are not always consistent across housing providers which create opportunities to conduct multi-stakeholder partnership to reduce overall risk.----- Research limitations/implications: The paper has implications for developers or investors who seek to include affordable housing as part of their portfolio. However, data collected in the study are a cross-section of interviews that will not include the impact on recent tax incentives offers by the Australian Commonwealth Government.----- Practical implications: The study suggests that implementing improvements to the risk mitigation and management framework may assist in promoting the supply of affordable housing by non-government providers.----- Originality/value: The focus of the study is the interaction between partnerships and risk management in development and management of affordable rental housing.
Resumo:
Media organizations are simultaneously key elements of an effective democracy and, for the most part, commercial entities seeking success in the market. They play an essential role in the formation of public opinion and the influence on personal choices. Yet most of them are commercial enterprises seeking readers or viewers, advertising, favorable regulatory decisions for their media, and other assets. This creates some intrinsic difficulties and produces some sharp tensions within media ethics. In this article, we examine such tensions—in theory and practice. We then consider the feasibility of introducing an ethics regime to the media industry—a regime that would be effective in a deregulated environment in protecting public interest and social responsibility. In the article, we also outline a rationale and a methodology for the institutionalization of an acceptable and workable media ethics regime that aims to protect the integrity of the industry in a future of undoubtedly increasing commercial pressure.
Resumo:
The case study of Lusoponte illustrates the concession awarded by the Portuguese Government to finance, design, build and operate two bridges over the Tagus in Lisbon, Portugal. It includes an overview of the project's background and an analysis of the main risk categories stating both the actual risks encountered and the mitigation measures adopted. Throughout the project a great attention was given to whole life cycle costs, and gains in efficiency and cost control. Among the lessons that can be learned from both the public and private sector is that a complete risk management analysis must include not only the technical factors but also a realistic assessment of environmental and social risks. These were the risks that were somewhat overseen and that caused the main problems to the project's development.
Resumo:
Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain.
Resumo:
Information security policy defines the governance and implementation strategy for information security in alignment with the corporate risk policy objectives and strategies. Research has established that alignment between corporate concerns may be enhanced when strategies are developed concurrently using the same development process as an integrative relationship is established. Utilizing the corporate risk management framework for security policy management establishes such an integrative relationship between information security and corporate risk management objectives and strategies. There is however limitation in the current literature on presenting a definitive approach that fully integrates security policy management with the corporate risk management framework. This paper presents an approach that adopts a conventional corporate risk management framework for security policy development and management to achieve alignment with the corporate risk policy. A case example is examined to illustrate the alignment achieved in each process step with a security policy structure being consequently derived in the process. It is shown that information security policy management outcomes become both integral drivers and major elements of the corporate-level risk management considerations. Further study should involve assessing the impact of the use of the proposed framework in enhancing alignment as perceived in this paper.
Resumo:
The safety risk management process describes the systematic application of management policies, procedures and practices to the activities of communicating, consulting, establishing the context, and identifying, analysing, evaluating, treating, monitoring and reviewing risk. This process is undertaken to provide assurances that the risks of a particular unmanned aircraft system activity have been managed to an acceptable level. The safety risk management process and its outcomes form part of the documented safety case necessary to obtain approvals for unmanned aircraft system operations. It also guides the development of an organisation’s operations manual and is a primary component of an organisation’s safety management system. The aim of this chapter is to provide existing risk practitioners with a high level introduction to some of the unique issues and challenges in the application of the safety risk management process to unmanned aircraft systems. The scope is limited to safety risks associated with the operation of unmanned aircraft in the civil airspace system and over inhabited areas. The structure of the chapter is based on the safety risk management process as defined by the international risk management standard ISO 31000:2009 and draws on aviation safety resources provided by International Civil Aviation Organization, the Federal Aviation Administration and U.S. Department of Defense. References to relevant aviation safety regulations, programs of research and fielded systems are also provided.