991 resultados para Flashing traffic signals.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Traffic Systems Division, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Railroad Administration, Office of Research and Development, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Railroad Administration, Office of Research and Development, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with reducing the waiting times of vehicles at the traffic junctions by synchronizing the traffic signals. Strategies are suggested for betterment of the situation at different time intervals of the day, thus ensuring smooth flow of traffic. The concept of single way systems are also analyzed. The situation is simulated in Witness 2003 Simulation package using various conventions. The average waiting times are reduced by providing an optimal combination for the traffic signal timer. Different signal times are provided for different times of the day, thereby further reducing the average waiting times at specific junctions/roads according to the experienced demands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arizona Department of Transportation, Phoenix

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fatigue damage in the connections of single mast arm signal support structures is one of the primary safety concerns because collapse could result from fatigue induced cracking. This type of cantilever signal support structures typically has very light damping and excessively large wind-induced vibration have been observed. Major changes related to fatigue design were made in the 2001 AASHTO LRFD Specification for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and supplemental damping devices have been shown to be promising in reducing the vibration response and thus fatigue load demand on mast arm signal support structures. The primary objective of this study is to investigate the effectiveness and optimal use of one type of damping devices termed tuned mass damper (TMD) in vibration response mitigation. Three prototype single mast arm signal support structures with 50-ft, 60-ft, and 70-ft respectively are selected for this numerical simulation study. In order to validate the finite element models for subsequent simulation study, analytical modeling of static deflection response of mast arm of the signal support structures was performed and found to be close to the numerical simulation results from beam element based finite element model. A 3-DOF dynamic model was then built using analytically derived stiffness matrix for modal analysis and time history analysis. The free vibration response and forced (harmonic) vibration response of the mast arm structures from the finite element model are observed to be in good agreement with the finite element analysis results. Furthermore, experimental test result from recent free vibration test of a full-scale 50-ft mast arm specimen in the lab is used to verify the prototype structure’s fundamental frequency and viscous damping ratio. After validating the finite element models, a series of parametric study were conducted to examine the trend and determine optimal use of tuned mass damper on the prototype single mast arm signal support structures by varying the following parameters: mass, frequency, viscous damping ratio, and location of TMD. The numerical simulation study results reveal that two parameters that influence most the vibration mitigation effectiveness of TMD on the single mast arm signal pole structures are the TMD frequency and its viscous damping ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Travel time is an important network performance measure and it quantifies congestion in a manner easily understood by all transport users. In urban networks, travel time estimation is challenging due to number of reasons such as, fluctuations in traffic flow due to traffic signals, significant flow to/from mid link sinks/sources, etc. The classical analytical procedure utilizes cumulative plots at upstream and downstream locations for estimating travel time between the two locations. In this paper, we discuss about the issues and challenges with classical analytical procedure such as its vulnerability to non conservation of flow between the two locations. The complexity with respect to exit movement specific travel time is discussed. Recently, we have developed a methodology utilising classical procedure to estimate average travel time and its statistic on urban links (Bhaskar, Chung et al. 2010). Where, detector, signal and probe vehicle data is fused. In this paper we extend the methodology for route travel time estimation and test its performance using simulation. The originality is defining cumulative plots for each exit turning movement utilising historical database which is self updated after each estimation. The performance is also compared with a method solely based on probe (Probe-only). The performance of the proposed methodology has been found insensitive to different route flow, with average accuracy of more than 94% given a probe per estimation interval which is more than 5% increment in accuracy with respect to Probe-only method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports an observation investigation of pedestrian crossing behaviors conducted at signalized crosswalks in urban areas in Singapore and Beijing on typical workdays. Each crosswalk was observed 3 times in different periods, i.e. normal hours, lunch hours, and rush hours. A total of 103,956 pedestrians were observed. The results showed that lane type, lane number, intersection type, and culture had significant effect on illegal pedestrian crossing in both cities; observation period had no significant effect on pedestrian violation in both cities; the violation rate in Singapore was lower than that in Beijing. However, observers reported that illegal crossing of vulnerable pedestrians, e.g. pregnant, the lame, old men and women, was more obvious in Singapore than that in Beijing. Evidence proved the hypothesis that the violations were related to pedestrians’ cognition of the definition of safety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Driving on an approach to a signalized intersection while distracted is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. Given the prevalence and importance of this particular scenario, the decisions and actions of distracted drivers during the onset of yellow lights are the focus of this study. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of Iowa - National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examination has been conducted from a traditional regression-based approach, which does not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that novice (16-17 years) and young drivers’ (18-25 years) have heightened yellow light running risk while distracted by a cell phone conversation. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Overall, distracted drivers across most tested groups tend to reduce the propensity of yellow light running as the distance to stop line increases, exhibiting risk compensation on a critical driving situation.