881 resultados para Fixed point index
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.
Resumo:
Dual Carrier Modulation (DCM) is currently used as the higher data rate modulation scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the user’s experience of these products. In this paper, Log Likelihood Ratio (LLR) demapping method is used for the DCM demaper implemented in fixed point model. Channel State Information (CSI) aided scheme coupled with the band hopping information is used as the further technique to improve the DCM demapping performance. The receiver performance for the fixed point DCM is simulated in realistic multi-path environments.
Resumo:
This paper proves the existence and uniqueness of a fixed-point for local contractions without assuming the family of contraction coefficients to be uniformly bounded away from 1. More importantly it shows how this fixed-point result can apply to study existence and uniqueness of solutions to some recursive equations that arise in economic dynamics.
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The condition for the global minimum of the vacuum energy for a non-Abelian gauge theory with a dynamically generated gauge boson mass scale which implies the existence of a nontrivial IR fixed point of the theory was shown. Thus, this vacuum energy depends on the dynamical masses through the nonperturbative propagators of the theory. The results show that the freezing of the QCD coupling constant observed in the calculations can be a natural consequence of the onset of a gluon mass scale, giving strong support to their claim.
Resumo:
The vacuum energy of QED, as a function of the coupling constant α, is shown to have an absolute minimum at the critical coupling αc=π/3. The effect of chiral symmetry breaking diminishes as the coupling is increased. We argue that these aspects of the vacuum energy shall remain unaltered beyond the ladder approximation.
Resumo:
[EN] The purpose of this paper is to present some fixed point theorems for Meir-Keeler contractions in a complete metric space endowed with a partial order. MSC: 47H10.
Resumo:
[EN] As is well known, in any infinite-dimensional Banach space one may find fixed point free self-maps of the unit ball, retractions of the unit ball onto its boundary, contractions of the unit sphere, and nonzero maps without positive eigenvalues and normalized eigenvectors. In this paper, we give upper and lower estimates, or even explicit formulas, for the minimal Lipschitz constant and measure of noncompactness of such maps.
Resumo:
[ES]Recientemente, en la Teoría del punto fijo, han aparecido muchos resultados que obtienen condiciones suficientes para la existencia de un punto fijo si trabajamos con aplicaciones en un conjunto dotado de un orden parcial. Generalmente, estos resultados combinan dos teoremas del punto fijo fundamentales: el Teorema de la contracción de Banach y el Teorema de Knaster-Tarski.