961 resultados para Fission-track Dating
Resumo:
The external detector method (EDM) is a widely used technique in fission track thermochronology (FTT) in which two different minerals are concomitantly employed: spontaneous tracks are observed in apatite and induced ones in the muscovite external detector. They show intrinsic differences in detection and etching properties that should be taken into account. In this work, new geometry factor values, g, in apatite, were obtained by directly measuring the ρed/ρis ratios and independently determined [GQR]ed/is values through the measurement of projected lengths. Five mounts, two of which were large area prismatic sections and three samples composed of random-orientation pieces have been used to determine the g-values. A side effect of applying EDM is that the value of the initial confined induced fission track, L0, is not measured in routine analyses. The L 0-value is an important parameter to quantify with good confidence the degree of annealing of the spontaneous fission tracks in unknown-age samples, and is essential for accurate thermal history modeling. The impact of using arbitrary L0-values on the inference of sample thermal history is investigated and discussed. The measurement of the L0-value for each sample to be dated using an extra irradiated apatite mount is proposed. This extra mount can be also used for determining the g value as an extension of the ρed/ρis ratio method. Eight apatite samples from crystalline basement, with grains at random orientation, were used to determine the g-values. The results found are statistically in agreement with the values found for apatite samples (from Durango, Mexico) measured in prismatic section and also measured at random orientation. There was no observable variation in efficiency regarding crystal orientation, showing that it is relatively safe using non-prismatic grains, especially in samples with paucity of grains, as it is the case of most basin samples. Implications for the ζ-calibration and for the calibration of the direct (spectrometer-based) fission-track dating are also discussed.
Resumo:
The area between São Paulo and Porto Alegre in southeastern Brazil plays a key area to understand and quantify the evolution of the South Atlantic passive continental margin (SAPCM) in Brazil. In this contribution, we present new thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons from metamorphic, sedimentary and intrusive rocks. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4). Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 525.1(2.4). Ma, whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0). Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.5) and 93.0 (2.5). Ma. The spatial distribution of these ages shows three distinct blocks with a different evolution cut by old fracture zones. While the central block exhibits an old stable block, the Northern and especially the Southern block underwent complex post-rift exhumation. The sample of the Northern block shows two distinct cooling phases in the Upper Cretaceous and the Paleogene to Neogene. After sedimentation of the Permian sandstones the samples of the Central block were never heated up over 100. °C with a following moderate to fast cooling phase in Cretaceous to Eocene time and a fast cooling between Oligocene to Miocene. The five thermal models obtained in the Southern block indicate a complex evolution with three cooling phases. The exhumation events of the three blocks correspond with the Paraná-Etendekka event, the alkaline intrusions due to the Trinidad hotspot, and the evolution of the continental rift basins in SE Brazil and are, therefore, most likely to be the major force for the post-rift evolution of the passive continental margin in SE Brazil, which therefore corresponds to the three main phases of the Andean orogeny. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The zircon mineral is widely studied in geochronology. In the case of the fission track method (FTM), the age is determined by the density of fission tracks at the zircon surface, which can be observed with an optical microscope after an appropriate chemical treatment (etching). The etching must be isotropic at the zircon grain surface to be used in the FTM, which leads those zircon grains whose etching is anisotropic to be discarded. The only reason for this discarding is the nonuniform morphology of the surface grain seen by optical microscopy, that is, no further physicochemical analysis is performed. In this work, combining micro-Raman and scanning electron microscopy (SEM) to study the etching anisotropy, it was shown that zircon grains that present at least one area at the surface where the density of fission track is uniform can be used in the FTM. The micro-Raman showed characteristic spectra of the standard zircon sample either from the areas where there are tracks or from where there are not. The only difference found was in the Raman bandwidths, which were broader for the areas with higher density of fission tracks. This suggests simply a decrease in the relative percentage of the crystalline/amorphous phases at these areas. The SEM/energy dispersive spectrometry (EDX) showed that there were no significant differences in the principal chemical composition at the areas with and without fission tracks. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Ages of zircon from sedimentary samples of Rio Parana Formation, belonging of Bauru Group, north of Parana Basin, Brazil, has been determined by zircon Fission Track and U-Th-Pb in situ dating methods. The obtained ages are from same zircon grain that provided information on the source areas for the sediments and the morphotectonic events.
Resumo:
Zircon samples from the Cenozoic São Paulo and Taubaté Basins and Mantiqueira Mountain Range (southeast Brazil) were concomitantly dated by zircon Fission Track Method (FTM) and in situ U-Pb dating method. While FTM detrital-zircon data are ideally used to provide low-temperature information, U-Pb single detrital grain ages record the time of zircon formation in igneous or high grade metamorphic environments. This methodology may be used to study the possible sources of the basins sediments. The results suggest that the São Paulo Basin is composed of sediments from just one source, the Mantiqueira Mountain Range. On the other hand, the Taubaté Basin presents further sediment sources besides the Mantiqueira Mountain Range. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fission-track and (40)Ar/(39)Ar ages place time constraints on the exhumation of the North Himalayan nappe stack, the Indus Suture Zone and Molasse, and the Transhimalayan Batholith in eastern Ladakh (NW India). Results from this and previous studies on a north-south transect passing near Tso Morari Lake suggest that the SW-directed North Himalayan nappe stack (comprising the Mata, Tetraogal and Tso Morari nappes) was emplaced and metamorphosed by c. 50-45 Ma, and exhumed to moderately shallow depths (c. 10 km) by c. 45-40 Ma. From the mid-Eocene to the present, exhumation continued at a steady and slow rate except for the root zone of the Tso Morari nappe, which cooled faster than the rest of the nappe stack. Rapid cooling occurred at c. 20 Ma and is linked to brittle deformation along the normal Ribil-Zildat Fault concomitant with extrusion of the Crystalline nappe in the south. Data from the Indus Molasse suggest that sediments were still being deposited during the Miocene.
Resumo:
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) - Tso Monad transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48-40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40-30 Ma in the Tso Monad dome (northern section of the transect) and by 30-20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.
Resumo:
An apatite fission track study of crystalline rocks underlying sedimentary basins in northeastern Brazil indicate that crustal blocks that occur on opposite sides of a geological fault experienced different thermal histories. Samples collected on the West block yielded corrected fission-track ages from 140 to 375 Ma, whereas samples collected on the East block yielded ages between 90 and 125 Ma. The thermal models suggest that each block experienced two cooling events separated by a heating event at different times. We concluded that the West block moved downward relative to the East block ca. 140 Ma ago, when sediments eroded from the East side were deposited on the West side. This process represents the early stage of sedimentary basin formation and the opening of the South Atlantic Ocean in the region. Downward and upward movements related to heating and cooling events of these crustal blocks at different periods until recent times are proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
One of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The two fundamental approaches to fission-track dating involve either an explicit determination of the thermal neutron fluence (φ-method) or a calibration against age standards (ζ-method). The neutron fluence measurements are carried out with metal-activation monitors or with uranium-fission monitors, co-irradiated with the samples. Uranium-fission monitors consist of either a thin mono-atomic) film, or a thick fission source (standard uranium glass) irradiated against a muscovite external track detector. In this work, different techniques for performing neutron-fluence measurements were compared: based on thin-film calibration, based on thick-source calibration, and based on gamma spectrometry of co-irradiated metal monitors (Au, Co). The results suggest that more experiments are needed to make all calibrations consistent, including new measurements of the length of etched induced tracks in mica. Also the standard glass calibration carried out with thin films should be confirmed with a greater number of calibrating irradiations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[1] The evolution of the rift shoulder and the sedimentary sequence of the Morondava basin in western Madagascar was mainly influenced by a Permo-Triassic continental failed rift (Karroo rift), and the early Jurassic separation of Madagascar from Africa. Karroo deposits are restricted to a narrow corridor along the basement-basin contact and parts of this contact feature a steep escarpment. Here, apatite fission track (AFT) analysis of a series of both basement and sediment samples across the escarpment reveals the low-temperature evolution of the exhuming Precambrian basement in the rift basin shoulder and the associated thermal evolution of the sedimentary succession. Seven basement and four Karroo sediment samples yield apparent AFT ages between ∼330 and ∼215 Ma and ∼260 and ∼95 Ma, respectively. Partially annealed fission tracks and thermal modeling indicate post-depositional thermal overprinting of both basement and Karroo sediment. Rocks presently exposed in the rift shoulder indicate temperatures of >60°C associated with this reheating whereby the westernmost sample in the sedimentary plain experienced almost complete resetting of the detrital apatite grains at temperatures of about ∼90–100°C. The younging of AFT ages westward indicates activity of faults, re-activating inherited Precambrian structures during Karroo sedimentation. Furthermore, our data suggest onset of final cooling/exhumation linked to (1) the end of Madagascar's drift southward relative to Africa during the Early Cretaceous, (2) activity of the Marion hot spot and associated Late Cretaceous break-up between Madagascar and India, and (3) the collision of India with Eurasia and subsequent re-organization of spreading systems in the Indian Ocean.