952 resultados para Finite-difference time-domain (FDTD) technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mode frequencies and quality factors (Q-factors) in two-dimensional (2-D) deformed square resonators are analyzed by finite-difference time-domain (FDTD) technique. The results show that the deformed square cavities with circular and cut corners have larger Q-factors than the perfect ones at certain conditions. For a square cavity with side length of 2 mu m and refractive index of 3.2, the mode Q-factor can increase 13 times as the perfect corners are replaced by a quarter of circle with radius of 0.3 pm. Furthermore the blue shift with the increasing deformations is found as a result of the reduction in effective resonator area. In square cavities with periodic roughness at sidewalls which maintains the symmetry of the square, the Q-factors of the whisperin gallery (WG)-like modes are still one order of magnitude larger that those of non-WG-like modes. However, the Q-tactors of these two types of modes are of the same order in the square cavity with random roughness. We also find that the rectangular and rhombic deformation largely reduce the Q-factors with the increasing offset and cause the splitting of the doubly degenerate modes due to the breaking of certain symmetry properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mode frequency and the quality factor of nanowire cavities are calculated from the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In a free-standing nanowire cavity with dielectric constant epsilon = 6.0 and a length of 5 mu m, quality factors of 130, 159, and 151 are obtained for the HE11 modes with a wavelength around 375 nm, at cavity radius of 60, 75, and 90 nm, respectively. The corresponding quality factors reduce to 78, 94, and 86 for a nanowire cavity standing on a sapphire substrate with a refractive index of 1.8. The mode quality factors are also calculated for the TE01 and TM01 modes, and the mode reflectivities are calculated from the mode quality factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite-difference time domain (FDTD) technique and the Pade approximation with Baker's algorithm are used to calculate the mode frequencies and quality factors of cavities. Comparing with the fast Fourier transformation/Pade method, we find that the Fade approximation and the Baker's algorithm can obtain exact resonant frequencies and quality factors based on a much shorter time record of the FDTD output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mode wavelength and quality factor (Q-factor) for resonant modes in optical equilateral triangle resonators (ETR's) are calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation, For an ETR with the side length of 3 mu m and the refractive index of 3.2, we get the mode wavelength interval of about 70 nm and the Q-factor of the fundamental mode over 10(3), The results show that the ETR is suitable to realize single-mode operation, and that the radiation loss in the corner regions of ETR is rather low, In addition, the numerical results of the mode wavelength agree very well with our analytical formula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of temperature and moisture fields as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mode characteristis of a microcylinders with center layer thickness 0.2 mu m and radius 1 mu m are investigated by the three-dimensional (31)) finite-difference time-domain (FDTD) technique and the Pade approximation. The mode quality factor (Q-factor) of the EH71 mode obtained by 3D FDTD increase with the increase of the refractive index of the cladding layer n(2) as n(2) smaller than 3.17, and can be as large as 2.4 x 10(4) as the vertical refractive index distribution is 3.17/3.4/3.17, which is much larger than that of the HE71 mode with the same vertical refractive index distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents methods for simulating room acoustics using the finite-difference time-domain (FDTD) technique, focusing on boundary and medium modeling. A family of nonstaggered 3-D compact explicit FDTD schemes is analyzed in terms of stability, accuracy, and computational efficiency, and the most accurate and isotropic schemes based on a rectilinear grid are identified. A frequency-dependent boundary model that is consistent with locally reacting surface theory is also presented, in which the wall impedance is represented with a digital filter. For boundaries, accuracy in numerical reflection is analyzed and a stability proof is provided. The results indicate that the proposed 3-D interpolated wideband and isotropic schemes outperform directly related techniques based on Yee's staggered grid and standard digital waveguide mesh, and that the boundary formulations generally have properties that are similar to that of the basic scheme used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its efficiency and simplicity, the finite-difference time-domain method is becoming a popular choice for solving wideband, transient problems in various fields of acoustics. So far, the issue of extracting a binaural response from finite difference simulations has only been discussed in the context of embedding a listener geometry in the grid. In this paper, we propose and study a method for binaural response rendering based on a spatial decomposition of the sound field. The finite difference grid is locally sampled using a volumetric array of receivers, from which a plane wave density function is computed and integrated with free-field head related transfer functions, in the spherical harmonics domain. The volumetric array is studied in terms of numerical robustness and spatial aliasing. Analytic formulas that predict the performance of the array are developed, facilitating spatial resolution analysis and numerical binaural response analysis for a number of finite difference schemes. Particular emphasis is placed on the effects of numerical dispersion on array processing and on the resulting binaural responses. Our method is compared to a binaural simulation based on the image method. Results indicate good spatial and temporal agreement between the two methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of buried objects using time-domain freespace measurements was carried out in the near field. The location of a hidden object was determined from an analysis of the reflected signal. This method can be extended to detect any number of objects. Measurements were carried out in the X- and Ku-bands using ordinary rectangular pyramidal horn antennas of gain 15 dB. The same antenna was used as the transmitter and recei er. The experimental results were compared with simulated results by applying the two-dimensional finite-difference time-domain(FDTD)method, and agree well with each other. The dispersi e nature of the dielectric medium was considered for the simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A preliminary attempt has been made to study the time domain characteristics of the induced voltage and current on the rocket and its exhaust plume (ionized trail) when it is coupled with the transient electromagnetic field generated by a nearby lightning discharge. For the computation, finite difference time domain (FDTD) technique has been used where the object is assumed to be a finite vertical nonuniform transmission line above a perfectly conducting ground. It is seen that the amplitude of the first peak of the induced voltage and current at the mid point of the object is 23.5 kV and 4.9 kA respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microsquare resonators laterally confined by SiO2/Au/air multilayer structure are investigated by light ray method with reflection phase-shift of the multiple layers and two-dimensional (2-D) finite-difference time-domain (FDTD) technique. The reflectivity and phase shift of the mode light ray on the sides of the square resonator with the semiconductor/SiO2/Au/air multilayer structure are calculated for TE and TM modes by transfer matrix method. Based on the reflection phase shift and the reflectivity, the mode wavelength and factor are calculated by the resonant condition and the mirror loss, which are in agreement well with that obtained by the FDTD simulation. We find that the mode factor increases greatly with the increase of the SiO2 layer thickness, especially as d < 0.3 mu m. For the square resonator with side length 2 mu m and refractive index 3.2, anticrossing mode couplings are found for confined TE modes at wavelength about 1.6 mu m at d = 0.11 mu m, and confined TM modes at d = 0.71 mu m, respectively.