956 resultados para Finite-difference time-domain (FDTD) technique
Resumo:
We assess the performance of three unconditionally stable finite-difference time-domain (FDTD) methods for the modeling of doubly dispersive metamaterials: 1) locally one-dimensional FDTD; 2) locally one-dimensional FDTD with Strang splitting; and (3) alternating direction implicit FDTD. We use both double-negative media and zero-index media as benchmarks.
Resumo:
This paper presents the characterization of an indoor Wimax radio channel using the Finite-Difference Time-Domain (FDTD) [1] method complemented with the Convolutional Perfect Matched Layer (CPML) technique [2]. An indoor 2D scenario is simulated in the 3.5GHz band (IEEE 802.16d-2004 and IEEE 802.16e-2005 [3]). In this study, we used two complementary techniques in both analysis, technique A and B for fading based on delay spread and technique C and D for fading based on Doppler spread. Both techniques converge to the same result. Simulated results define the channel as flat, slow and without inter-symbolic interference (ISI), making the application of the spatial diversity the most appropriate scheme.
Resumo:
Active microwave imaging is explored as an imaging modality for early detection of breast cancer. When exposed to microwaves, breast tumor exhibits electrical properties that are significantly different from that of healthy breast tissues. The two approaches of active microwave imaging — confocal microwave technique with measured reflected signals and microwave tomographic imaging with measured scattered signals are addressed here. Normal and malignant breast tissue samples of same person are subjected to study within 30 minutes of mastectomy. Corn syrup is used as coupling medium, as its dielectric parameters show good match with that of the normal breast tissue samples. As bandwidth of the transmitter is an important aspect in the time domain confocal microwave imaging approach, wideband bowtie antenna having 2:1 VSWR bandwidth of 46% is designed for the transmission and reception of microwave signals. Same antenna is used for microwave tomographic imaging too at the frequency of 3000 MHz. Experimentally obtained time domain results are substantiated by finite difference time domain (FDTD) analysis. 2-D tomographic images are reconstructed with the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles.
Resumo:
This thesis describes the development and analysis of an Isosceles Trapezoidal Dielectric Resonator Antenna (ITDRA) by realizing different DR orientations with suitable feed configurations enabling it to be used as multiband, dual band dual polarized and wideband applications. The motivation for this work has been inspired by the need for compact, high efficient, low cost antenna suitable for multi band application, dual band dual polarized operation and broadband operation with the possibility of using with MICs, and to ensure less expensive, more efficient and quality wireless communication systems. To satisfy these challenging demands a novel shaped Dielectric Resonator (DR) is fabricated and investigated for the possibility of above required properties by trying out different orientations of the DR on a simple microstrip feed and with slotted ground plane as well. The thesis initially discusses and evaluates recent and past developments taken place within the microwave industry on this topic through a concise review of literature. Then the theoretical aspects of DRA and different feeding techniques are described. Following this, fabrication and characterization of DRA is explained. To achieve the desired requirements as above both simulations and experimental measurements were undertaken. A 3-D finite element method (FEM) electromagnetic simulation tool, HFSSTM by Agilent, is used to determine the optimum geometry of the dielectric resonator. It was found to be useful in producing approximate results although it had some limitations. A numerical analysis technique, finite difference time domain (FDTD) is used for validating the results of wide band design at the end. MATLAB is used for modeling the ITDR and implementing FDTD analysis. In conclusion this work offers a new, efficient and relatively simple alternative for antennas to be used for multiple requirements in the wireless communication system.
Resumo:
O presente trabalho propõe metodologias para detectar a presença e localizar um intruso em ambientes indoor, 2-D e 3-D, sendo que neste último, utiliza-se um sistema cooperativo de antenas e, em ambos os casos, o sistema é baseado em radares multiestáticos. Para obter uma alta resolução, o radar opera com pulsos UWB, que possuem amplitude espectral máxima em 1 GHz para ambientes 2-D e, pulsos de banda larga com frequências entre 200 MHz e 500 MHz para ambientes 3-D. A estimativa de localização, para os ambientes bidimensionais, é feita pela técnica de otimização Enxame de Partículas - PSO (Particle Swarm Optimization), pelo método de Newton com eliminação de Gauss e pelo método dos mínimos quadrados com eliminação de Gauss. Para o ambiente tridimensional, foi desenvolvida uma metodologia vetorial que estima uma possível região de localização do intruso. Para a simulação das ondas eletromagnéticas se utiliza o método numérico FDTD (Diferenças Finitas no Domínio do Tempo) associado à técnica de absorção UPML (Uniaxial Perfectly Matched Layer) com o objetivo de truncar o domínio de análise simulando uma propagação ao infinito. Para a análise do ambiente em 2-D foi desenvolvido o ACOR-UWB-2-D e para o ambiente 3-D foi utilizado o software LANE SAGS.
Resumo:
In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.
Resumo:
Most magnetic resonance imaging (MRI) spatial encoding techniques employ low-frequency pulsed magnetic field gradients that undesirably induce multiexponentially decaying eddy currents in nearby conducting structures of the MRI system. The eddy currents degrade the switching performance of the gradient system, distort the MRI image, and introduce thermal loads in the cryostat vessel and superconducting MRI components. Heating of superconducting magnets due to induced eddy currents is particularly problematic as it offsets the superconducting operating point, which can cause a system quench. A numerical characterization of transient eddy current effects is vital for their compensation/control and further advancement of the MRI technology as a whole. However, transient eddy current calculations are particularly computationally intensive. In large-scale problems, such as gradient switching in MRI, conventional finite-element method (FEM)-based routines impose very large computational loads during generation/solving of the system equations. Therefore, other computational alternatives need to be explored. This paper outlines a three-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates for the modeling of low-frequency transient eddy currents in MRI, as an extension to the recently proposed time-harmonic scheme. The weakly coupled Maxwell's equations are adapted to the low-frequency regime by downscaling the speed of light constant, which permits the use of larger FDTD time steps while maintaining the validity of the Courant-Friedrich-Levy stability condition. The principal hypothesis of this work is that the modified FDTD routine can be employed to analyze pulsed-gradient-induced, transient eddy currents in superconducting MRI system models. The hypothesis is supported through a verification of the numerical scheme on a canonical problem and by analyzing undesired temporal eddy current effects such as the B-0-shift caused by actively shielded symmetric/asymmetric transverse x-gradient head and unshielded z-gradient whole-body coils operating in proximity to a superconducting MRI magnet.
Resumo:
An object-oriented finite-difference time-domain (FDTD) simulator has been developed for electromagnetic study and design applications in Magnetic Resonance Imaging. It is aimed to be a complete FDTD model of an MRI system including all high and low-frequency field generating units and electrical models of the patient. The design method is described and MRI-based numerical examples are presented to illustrate the function of the numerical solver, particular emphasis is placed on high field studies.
Resumo:
Finite Difference Time Domain (FDTD) Method and software are applied to obtain diffraction waves from modulated Gaussian plane wave illumination for right angle wedges and Fast Fourier Transform (FFT) is used to get diffraction coefficients in a wideband in the illuminated lit region. Theta and Phi polarization in 3-dimensional, TM and TE polarization in 2-dimensional cases are considered respectively for soft and hard diffraction coefficients. Results using FDTD method of perfect electric conductor (PEC) wedge are compared with asymptotic expressions from Uniform Theory of Diffraction (UTD). Extend the PEC wedges to some homogenous conducting and dielectric building materials for diffraction coefficients that are not available analytically in practical conditions. ^
Resumo:
Electromagnetic waves in suburban environment encounter multiple obstructions that shadow the signal. These waves are scattered and random in polarization. They take multiple paths that add as vectors at the portable device. Buildings have vertical and horizontal edges. Diffraction from edges has polarization dependent characteristics. In practical case, a signal transmitted from a vertically polarized high antenna will result in a significant fraction of total power in the horizontal polarization at the street level. Signal reception can be improved whenever there is a probability of receiving the signal in at least two independent ways or branches. The Finite-Difference Time-Domain (FDTD) method was applied to obtain the two and three-dimensional dyadic diffraction coefficients (soft and hard) of right-angle perfect electric conductor (PEC) wedges illuminated by a plane wave. The FDTD results were in good agreement with the asymptotic solutions obtained using Uniform Theory of Diffraction (UTD). Further, a material wedge replaced the PEC wedge and the dyadic diffraction coefficient for the same was obtained.
Resumo:
Com o crescimento previsível e exponencial das redes de comunicações móveis motivado pela mobilidade, flexibilidade e também comodidade do utilizador levam a que este se torne na fatia mais importante do mundo das telecomunicações dos dias que correm. Assim é importante estudar e caracterizar canais rádio para as mais diversas gamas de frequências utilizadas nas mais variadas tecnologias. O objectivo principal desta dissertação de Mestrado é caracterizar um canal rádio para a tecnologia sem fios Worldwide Inter-operability for Microwave Access (Wimax para as frequências de 3,5 GHz e 5 GHz) actualmente vista pela comunidade científica como a tecnologia sem fios com maiores perspectivas de sucesso. Para tal, determinaram-se o Perfil de Atraso de Potência (PAP) e também a Potência em Função da Distância (PFD) recorrendo ao método computacional de simulação Finite-Difference Time-Domain (FDTD). De forma a estudar e caracterizar o canal rádio, em termos de desvanecimento relativo ao espalhamento de atraso, usaram-se dois métodos alternativos que têm como entrada o PAP. Para caracterizar o canal quanto ao desvanecimento baseado em espalhamento de Doppler, recorreu-se também a duas técnicas alternativas tendo como entrada o PFD. Em ambas as situações os dois métodos alternativos convergiram para os mesmos resultados. A caracterização é feita em dois cenários diferentes: um em que consideramos que a maioria dos obstáculos são condutores eléctricos perfeitos (CEP) e que passaremos a designar Cenário PEC, e um segundo cenário em que os obstáculos têm propriedades electromagnéticas diferentes, e que passará a ser designado por Cenário MIX. Em ambos os cenários de análise concluiu-se que o canal é plano, lento e sem ISI.
Resumo:
We present results, obtained by means of an analytic study and a numerical simulation, about the resonant condition necessary to produce a Localized Surface Plasmonic Resonance (LSPR) effect at the surface of metal nanospheres embedded in an amorphous silicon matrix. The study is based on a Lorentz dispersive model for a-Si:H permittivity and a Drude model for the metals. Considering the absorption spectra of a-Si:H, the best choice for the metal nanoparticles appears to be aluminium, indium or magnesium. No difference has been observed when considering a-SiC:H. Finite-difference time-domain (FDTD) simulation of an Al nanosphere embedded into an amorphous silicon matrix shows an increased scattering radius and the presence of LSPR induced by the metal/semiconductor interaction under green light (560 nm) illumination. Further results include the effect of the nanoparticles shape (nano-ellipsoids) in controlling the wavelength suitable to produce LSPR. It has been shown that is possible to produce LSPR in the red part of the visible spectrum (the most critical for a-Si:H solar cells applications in terms of light absorption enhancement) with aluminium nano-ellipsoids. As an additional results we may conclude that the double Lorentz-Lorenz model for the optical functions of a-Si:H is numerically stable in 3D simulations and can be used safely in the FDTD algorithm. A further simulation study is directed to determine an optimal spatial distribution of Al nanoparticles, with variable shapes, capable to enhance light absorption in the red part of the visible spectrum, exploiting light trapping and plasmonic effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.
Resumo:
The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.
Resumo:
The thesis is the outcome of the experimental and theoretical Investigations on novel feeding techniques for bandwidth enhancement of microstrip patches. The new feeding techniques provide bandwidth enhancement without deteriorating the radiation characteristics of the antenna. The antenna is analysed using finite Difference Time Domain (FDTD) method. The predicated results are compared with the experimental results and excellent agreement is observed. The results are also verified using IE3D simulation software. The antenna is suitable for personal and broadband communications.