901 resultados para Finite element method (FEM)
Resumo:
An application of the Finite Element Method (FEM) to the solution of a geometric problem is shown. The problem is related to curve fitting i.e. pass a curve trough a set of given points even if they are irregularly spaced. Situations where cur ves with cusps can be encountered in the practice and therefore smooth interpolatting curves may be unsuitable. In this paper the possibilities of the FEM to deal with this type of problems are shown. A particular example of application to road planning is discussed. In this case the funcional to be minimized should express the unpleasent effects of the road traveller. Some comparative numerical examples are also given.
Resumo:
El objetivo de la tesis es la investigación de algoritmos numéricos para el desarrollo de herramientas numéricas para la simulación de problemas tanto de comportamiento en la mar como de resistencia al avance de buques y estructuras flotantes. La primera herramienta desarrollada resuelve el problema de difracción y radiación de olas. Se basan en el método de los elementos finitos (MEF) para la resolución de la ecuación de Laplace, así como en esquemas basados en MEF, integración a lo largo de líneas de corriente, y en diferencias finitas desarrollados para la condición de superficie libre. Se han desarrollado herramientas numéricas para la resolución de la dinámica de sólido rígido en sistemas multicuerpos con ligaduras. Estas herramientas han sido integradas junto con la herramienta de resolución de olas difractadas y radiadas para la resolución de problemas de interacción de cuerpos con olas. También se han diseñado algoritmos de acoplamientos con otras herramientas numéricas para la resolución de problemas multifísica. En particular, se han realizado acoplamientos con una herramienta numérica basada de cálculo de estructuras con MEF para problemas de interacción fluido-estructura, otra de cálculo de líneas de fondeo, y con una herramienta numérica de cálculo de flujos en tanques internos para problemas acoplados de comportamiento en la mar con “sloshing”. Se han realizado simulaciones numéricas para la validación y verificación de los algoritmos desarrollados, así como para el análisis de diferentes casos de estudio con aplicaciones diversas en los campos de la ingeniería naval, oceánica, y energías renovables marinas. ABSTRACT The objective of this thesis is the research on numerical algorithms to develop numerical tools to simulate seakeeping problems as well as wave resistance problems of ships and floating structures. The first tool developed is a wave diffraction-radiation solver. It is based on the finite element method (FEM) in order to solve the Laplace equation, as well as numerical schemes based on FEM, streamline integration, and finite difference method tailored for solving the free surface boundary condition. It has been developed numerical tools to solve solid body dynamics of multibody systems with body links across them. This tool has been integrated with the wave diffraction-radiation solver to solve wave-body interaction problems. Also it has been tailored coupling algorithms with other numerical tools in order to solve multi-physics problems. In particular, it has been performed coupling with a MEF structural solver to solve fluid-structure interaction problems, with a mooring solver, and with a solver capable of simulating internal flows in tanks to solve couple seakeeping-sloshing problems. Numerical simulations have been carried out to validate and verify the developed algorithms, as well as to analyze case studies in the areas of marine engineering, offshore engineering, and offshore renewable energy.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones
Resumo:
Determining how an exhaust system will perform acoustically before a prototype muffler is built can save the designer both a substantial amount of time and resources. In order to effectively use the simulation tools available it is important to understand what is the most effective tool for the intended purpose of analysis as well as how typical elements in an exhaust system affect muffler performance. An in-depth look at the available tools and their most beneficial uses are presented in this thesis. A full parametric study was conducted using the FEM method for typical muffler elements which was also correlated to experimental results. This thesis lays out the overall ground work on how to accurately predict sound pressure levels in the free field for an exhaust system with the engine properties included. The accuracy of the model is heavily dependent on the correct temperature profile of the model in addition to the accuracy of the source properties. These factors will be discussed in detail and methods for determining them will be presented. The secondary effects of mean flow, which affects both the acoustical wave propagation and the flow noise generation, will be discussed. Effective ways for predicting these secondary effects will be described. Experimental models will be tested on a flow rig that showcases these phenomena.
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
The use of finite element analysis (FEA) to design electrical motors has increased significantly in the past few years due the increasingly better performance of modern computers. Even though the analytical software remains the most used tool, the FEA is widely used to refine the analysis and gives the final design to be prototyped. The power factor, a standard data of motor manufactures data sheet is important because it shows how much reactive power is consumed by the motor. This data becomes important when the motor is connected to network. However, the calculation of power factor is not an easy task. Due to the saturation phenomena the input motor current has a high level of harmonics that cannot be neglected. In this work the FEA is used to evaluate a proposed (not limitative) methodology to estimate the power factor or displacement factor of a small single-phase induction motor. Results of simulations and test are compared.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2011
Resumo:
Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.