1000 resultados para File name
Resumo:
We are investigating the late Holocene rise in CO2 by performing four experiments with the climate-carbon-cycle model CLIMBER2-LPJ. Apart from the deep sea sediments, important carbon cycle processes considered are carbon uptake or release by the vegetation, carbon uptake by peatlands, and CO 2 release due to shallow water sedimentation of CaCO3. Ice core data of atmospheric CO2 between 8 ka BP and preindustrial climate can only be reproduced if CO2 outgassing due to shallow water sedimentation of CaCO3 is considered. In this case the model displays an increase of nearly 20 ppmv CO2 between 8 ka BP and present day. Model configurations that do not contain this forcing show a slight decrease in atmospheric CO2. We can therefore explain the late Holocene rise in CO2 by invoking natural forcing factors only, and anthropogenic forcing is not required to understand preindustrial CO2 dynamics.
Resumo:
The climate of Marine Isotope Stage (MIS) 11, the interglacial roughly 400,000 years ago, is investigated for four time slices, 416, 410, 400, and 394 ka. The overall picture is that MIS 11 was a relatively warm interglacial in comparison to preindustrial, with Northern Hemisphere (NH) summer temperatures early in MIS 11 (416-410 ka) warmer than preindustrial, though winters were cooler. Later in MIS 11, especially around 400 ka, conditions were cooler in the NH summer, mainly in the high latitudes. Climate changes simulated by the models were mainly driven by insolation changes, with the exception of two local feedbacks that amplify climate changes. Here, the NH high latitudes, where reductions in sea ice cover lead to a winter warming early in MIS 11, as well as the tropics, where monsoon changes lead to stronger climate variations than one would expect on the basis of latitudinal mean insolation change alone, are especially prominent. The results support a northward expansion of trees at the expense of grasses in the high northern latitudes early during MIS 11, especially in northern Asia and North America.
Resumo:
Am Mittelatlantischen Rücken befinden sich zahlreiche intermontane Sedimentbecken. Ein solches 8 x 14 km großes und bereits im Rahmen der internationalen Bohrprogramme ODP und DSDP mehrmals beprobtes und untersuchtes Sedimentbecken ist "North Pond". In Februar und März 2009 wurde erstmals ein umfassender Parasound-Survey in "North Pond" durchgeführt. Parasound-Daten werden zur Untersuchung oberflächennaher Sedimentstrukturen genutzt. Dabei können kleinskalige Rutschungen, Störungen und Sedimentabfolgen abgebildet werden, die mit niederfrequenterer Seismik nicht erkannt werden können.
Resumo:
While modern sampling techniques, such as autonomous underwater vehicles, are increasing our knowledge of the fauna beneath Antarctic sea ice of only a few meters in depth, greater sampling difficulties mean that little is known about the marine life underneath Antarctic ice shelves over 100 m thick. In this study, we present underwater images showing the underside of an Antarctic ice shelf covered by aggregated invertebrate communities, most likely cnidarians and isopods. These images, taken at an average depth of 145 m, were obtained with a digital still camera system attached to Weddell seals Leptonychotes weddellii foraging just beneath the ice shelf. Our observations indicate that, similar to the sea floor, ice shelves serve as an important habitat for a remarkable amount of marine invertebrate fauna in Antarctica.
Resumo:
Lake La Thuile, in the Northern French Prealps (874 m a.s.l.), provides an 18 m long sedimentary sequence spanning the entire Lateglacial/Holocene period. The high resolution multi-proxy (sedimentological, palynological, geochemical) analysis of the uppermost 6.2 meters reveals the Holocene dynamics of erosion in the catchment in response to landscape modifications. The mountain belt is at relevant altitude to study past human activities and the watershed is sufficiently disconnected from large valleys to capture a local sedimentary signal. From 12,000 to 10,000 cal. BP (10 to 8 ka cal. BC), the onset of hardwood species triggered a drop in erosion following the Lateglacial/Holocene transition. From 10,000 to 4500 cal. BP (8 to 2.5 ka cal. BC), the forest became denser and favored slope stabilization while erosion processes were very weak. A first erosive phase was initiated at ca . 4500 cal. BP without evidence of human presence in the catchment. Then, the forest declined at approximately 3000 cal. BP, suggesting the first human influence on the landscape. Two other erosive phases are related to anthropic activities: approximately 2500 cal. BP (550 cal. BC) during the Roman period and after 1600 cal. BP (350 cal. AD) with a substantial accentuation in the Middle Ages. In contrast, the lower erosion produced during the Little Ice Age, when climate deteriorations are generally considered to result in an increased erosion signal in this region, suggests that anthropic activities dominated the erosive processes and completely masked the natural effects of climate on erosion in the late Holocene.