558 resultados para Fibrin clot


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS Plasminogen activator inhibitor-1 (PAI-1) has been regarded as the main antifibrinolytic protein in diabetes, but recent work indicates that complement C3 (C3), an inflammatory protein, directly compromises fibrinolysis in type 1 diabetes. The aim of the current project was to investigate associations between C3 and fibrinolysis in a large cohort of individuals with type 2 diabetes. METHODS Plasma levels of C3, C-reactive protein (CRP), PAI-1 and fibrinogen were analysed by ELISA in 837 patients enrolled in the Edinburgh Type 2 Diabetes Study. Fibrin clot lysis was analysed using a validated turbidimetric assay. RESULTS Clot lysis time correlated with C3 and PAI-1 plasma levels (r = 0.24, p < 0.001 and r = 0.22, p < 0.001, respectively). In a multivariable regression model involving age, sex, BMI, C3, PAI-1, CRP and fibrinogen, and using log-transformed data as appropriate, C3 was associated with clot lysis time (regression coefficient 0.227 [95% CI 0.161, 0.292], p < 0.001), as was PAI-1 (regression coefficient 0.033 [95% CI 0.020, 0.064], p < 0.05) but not fibrinogen (regression coefficient 0.003 [95% CI -0.046, 0.051], p = 0.92) or CRP (regression coefficient 0.024 [95% CI -0.008, 0.056], p = 0.14). No correlation was demonstrated between plasma levels of C3 and PAI-1 (r = -0.03, p = 0.44), consistent with previous observations that the two proteins affect different pathways in the fibrinolytic system. CONCLUSIONS/INTERPRETATION Similarly to PAI-1, C3 plasma levels are independently associated with fibrin clot lysis in individuals with type 2 diabetes. Therefore, future studies should analyse C3 plasma levels as a surrogate marker of fibrinolysis potential in this population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity. Due to its interplay with several coagulation factors, it has the ability to induce fibrin clot formation independent of the usual coagulation activation pathways. We have recently shown that MASP-1 activates prothrombin and identified arginine (R) 155, R271, and R393 as potential cleavage sites. FXa cleaves R320 instead of R393, and thrombin cleaves R155 and R284 in prothrombin. Here we have used three arginine-to-glutamine mutants of prothrombin, R271Q, R320Q, R393Q and the serine-to-alanine active site mutant S525A to investigate in detail the mechanism of MASP-1 mediated prothrombin activation. Prothrombin wildtype and mutants were digested with MASP-1 and the cleavage products were analysed by SDS-PAGE and N-terminal sequencing. A functional clotting assay was performed by thrombelastography. We have found that MASP-1 activates prothrombin via two simultaneous pathways, either cleaving at R271 or R393 first. Both pathways result in the formation of several active alternative thrombin species. Functional studies confirmed that both R393 and R320 are required for prothrombin activation by MASP-1, whereas R155 is not considered to be an important cleavage site in this process. In conclusion, we have described for the first time a detailed model of prothrombin activation by MASP-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CNS) are recognized as important pathogens and are particularly associated with foreign body infections. S. epidermidis accounts for approximately 75% of the infections caused by CNS. Three genes, sdrF, sdrG, and sdrH, were identified by screening a S. epidermidis genomic library with a probe encompassing the serine-aspartate dipeptide repeat-encoding region (region R) of clfA from S. aureus. SdrG has significant amino acid identity to ClfA, ClfB and other surface proteins of S. aureus. SdrG is also similar to a protein (Fbe) recently described by Nilsson, et al. (Infection and Immunity, 1998, 66:2666–73) from S. epidermidis. The N-terminal domain (A region) of SdrG was expressed as a his-tag fusion protein in E. coli. In an ELISA, this protein, rSdrG(50-597) was shown to bind specifically to fibrinogen (Fg). Western ligand blot analysis showed that SdrG binds the Bβ chain of Fg. To further characterize the rSdrG(50-597)-Fg interaction, truncates of the Fg Bβ chain were made and expressed as recombinant proteins in E. coli. SdrG was shown to bind the full-length Bβ chain (1462), as well as the N-terminal three-quarters (1-341), the N-terminal one-half (1-220) and the N-terminal one-quarter (1-95) Bβ chain constructs. rSdrG(50-597) failed to bind to the recombinant truncates that lacked the N-terminal 25 amino acid residues of this polypeptide suggesting that SdrG recognizes a site within this region of the Bβ chain. Inhibition ELISAs have shown that peptide mimetics, including β1–25, and β6–20, encompassing this 25 residue region can inhibit binding of rSdrG(50-597) to Fg coated wells. Using fluorescence polarization we were able to determine an equilibrium constant (KD) for the interaction of rSdrG(50-597) with the Fg Bβ chain peptide β1–25. The labeled peptide was shown to bind to rSdrG(50-597) with a KD of 0.14 ± 0.01μM. Because rSdrG(50-597) recognizes a site in the Fg Bβ chain close to the thrombin cleavage site, we investigated the possibility of the rSdrG(50-597) site either overlapping or lying close to this cleavage site. An ELISA showed that rSdrG(50-597) binding to thrombin-treated Fg was significantly reduced. In a clot inhibition assay rSdrG(50-597) was able to inhibit fibrin clot formation in a concentration dependent manner. Furthermore, rSdrG(50-597) was able to inhibit clot formation by preventing the release of fibrinopeptide B as determined by HPLC. To further define the interaction between rSdrG(50-597) and peptide β6–20, we utilized an alanine amino acid replacement strategy. The residues in β6–20 that appear to be important in rSdrG(50-597) binding to Fg, were confirmed by the rSdrG(273-597)-β6–20 co-crystal structure that was recently solved by our collaborators at University of Alabama-Birmingham. Additionally, rSdrG(50-597) was not able to bind to Fg from different animal species, rather it bound specifically to human Fg in an ELISA. This suggests that the sequence variation between Fg Bβ chains of different species, specifically with in the N-terminal 25 residues, affects the ability of rSdrG(50-597) binding to Fg, and this may explain why S. epidermidis is primarily a human pathogen. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decorin, a dermatan/chondroitin sulfate proteoglycan, is ubiquitously distributed in the extracellular matrix (ECM) of mammals. Decorin belongs to the small leucine rich proteoglycan (SLRP) family, a proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. The decorin core protein appears to mediate the binding of decorin to ECM molecules, such as collagens and fibronectin. It is believed that the interactions of decorin with these ECM molecules contribute to the regulation of ECM assembly, cell adhesions, and cell proliferation. These basic biological processes play critical roles during embryonic development and wound healing and are altered in pathological conditions such as fibrosis and tumorgenesis. ^ In this dissertation, we discover that decorin core protein can bind to Zn2+ ions with high affinity. Zinc is an essential trace element in mammals. Zn2+ ions play a catalytic role in the activation of many enzymes and a structural role in the stabilization of protein conformation. By examining purified recombinant decorin and its core protein fragments for Zn2+ binding activity using Zn2+-chelating column chromatography and Zn2+-equilibrium dialysis approaches, we have located the Zn2+ binding domain to the N-terminal sequence of the decorin core protein. The decorin N-terminal domain appears to contain two Zn2+ binding sites with similar high binding affinity. The sequence of the decorin N-terminal domain does not resemble any other reported zinc-binding motifs and, therefore, represents a novel Zn 2+ binding motif. By investigating the influence of Zn2+ ions on decorin binding interactions, we found a novel Zn2+ dependent interaction with fibrinogen, the major plasma protein in blood clots. Furthermore, a recombinant peptide (MD4) consisting of a 41 amino acid sequence of mouse decorin N-terminal domain can prolong thrombin induced fibrinogen/fibrin clot formation. This suggests that in the presence of Zn2+ the decorin N-terminal domain has an anticoagulation activity. The changed Zn2+-binding activities of the truncated MD4 peptides and site-directed mutagenesis generated mutant peptides revealed that the functional MD4 peptide might contain both a structural zinc-binding site in the cysteine cluster region and a catalytic zinc site that could be created by the flanking sequences of the cysteine cluster region. A model of a loop-like structure for MD4 peptide is proposed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report the crystal structure at ≈4-Å resolution of a selectively proteolyzed bovine fibrinogen. This key component in hemostasis is an elongated 340-kDa glycoprotein in the plasma that upon activation by thrombin self-assembles to form the fibrin clot. The crystals are unusual because they are made up of end-to-end bonded molecules that form flexible filaments. We have visualized the entire coiled-coil region of the molecule, which has a planar sigmoidal shape. The primary polymerization receptor pockets at the ends of the molecule face the same way throughout the end-to-end bonded filaments, and based on this conformation, we have developed an improved model of the two-stranded protofibril that is the basic building block in fibrin. Near the middle of the coiled-coil region, the plasmin-sensitive segment is a hinge about which the molecule adopts different conformations. This segment also includes the boundary between the three- and four-stranded portions of the coiled coil, indicating the location on the backbone that anchors the extended flexible Aα arm. We suggest that a flexible branch point in the molecule may help accommodate variability in the structure of the fibrin clot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Agro-wastes were used for the production of fibrinolytic enzyme in solid-state fermentation. The process parameters were optimized to enhance the production of fibrinolytic enzyme from Bacillus halodurans IND18 by statistical approach. The fibrinolytic enzyme was purified, and the properties were studied. Results: A two-level full factorial design was used to screen the significant factors. The factors such as moisture, pH, and peptone were significantly affected enzyme production and these three factors were selected for further optimization using central composite design. The optimum medium for fibrinolytic enzyme production was wheat bran medium containing 1% peptone and 80% moisture with pH 8.32. Under these optimized conditions, the production of fibrinolytic enzyme was found to be 6851 U/g. The fibrinolytic enzyme was purified by 3.6-fold with 1275 U/mg specific activity. The molecular mass of fibrinolytic enzyme was determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis, and it was observed as 29 kDa. The fibrinolytic enzyme depicted an optimal pH of 9.0 and was stable at a range of pH from 8.0 to 10.0. The optimal temperature was 60°C and was stable up to 50°C. This enzyme activated plasminogen and also degraded the fibrin net of blood clot, which suggested its potential as an effective thrombolytic agent. Conclusions: Wheat bran was found to be an effective substrate for the production of fibrinolytic enzyme. The purified fibrinolytic enzyme degraded fibrin clot. The fibrinolytic enzyme could be useful to make as an effective thrombolytic agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most research virtually ignores the important role of a blood clot in supporting bone healing. In this study, we investigated the effects of surface functional groups carboxyl and alkyl on whole blood coagulation, complement activation and blood clot formation. We synthesised and tested a series of materials with different ratios of carboxyl (–COOH) and alkyl (–CH3, –CH2CH3 and –(CH2)3CH3) groups. We found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/– CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of coagulation activation. The pattern of complement activation was entirely similar to that of surface-induced coagulation. All material coated surfaces resulted in clots with thicker fibrin in a denser network at the clot/material interface and a significantly slower initial fibrinolysis when compared to uncoated glass surfaces. The amounts of platelet-derived growth factor-AB (PDGF-AB) and transforming growth factor-b (TGF-b1) released from an intact clot were higher than a lysed clot. The release of PDGF-AB was found to be correlated with the fibrin density. This study demonstrated that surface chemistry can significantly influence the activation of blood coagulation and complement system, resultant clot structure, susceptibility to fibrinolysis as well as release of growth factors, which are important factors determining the bone healing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This paper reviews the formation of a blood clot during bone healing in related to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in related to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processo FAPESP: 2012/24545-3

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To explore relevant changes in unexplained intraoperative bleeding, we evaluated elements of the final steps of the coagulation cascade in 226 consecutive patients undergoing elective surgery. Patients were stratified for the occurrence of unexplained intraoperative bleeding according to predefined criteria. Twenty patients (8.8%) developed unexplained bleeding. The median intraoperative blood loss was 1350 mL (bleeders) and 400 mL (nonbleeders) (P < 0.001). Fibrinogen and Factor XIII (F. XIII) were more rapidly consumed in bleeders (P < 0.001). Soluble fibrin formation (fibrin monomer) was increased in bleeders throughout surgery (P < or = 0.014). However, F. XIII availability per unit thrombin generated was significantly decreased in bleeders before, during, and after surgery (P < or = 0.051). Computerized thrombelastography showed a parallel, significant reduction in clot firmness. We suggest that mild preexisting coagulopathy is not rare in surgical patients and probably can result in clinically relevant intraoperative bleeding. This hemostatic disorder shows impaired clot firmness, probably secondary to decreased cross-linking (due to a loss of F. XIII, both in absolute measures and per unit thrombin generated). We suggest that the application of F. XIII might be worthwhile to test in a prospective clinical trial to increase clot firmness in patients at risk for this intraoperative coagulopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.